
www.elsevier.nl/locate/jnlabr/yjfls
Journal of Fluids and Structures 17 (2003) 185–224

Large strain formulations of extensible flexible marine pipes
transporting fluid

S. Chucheepsakula,*, T. Monprapussorna, T. Huangb

aDepartment of Civil Engineering, King Mongkut’s University of Technology Thonburi, Bangmod, Toongkru, Bangkok 10140, Thailand
bDepartment of Civil and Environmental Engineering, University of Texas at Arlington, Arlington, TX 76019-0167, USA

Received 15 August 2000; accepted 8 August 2002

Abstract

This paper develops mathematical formulations for large strain analysis of extensible flexible marine pipes

transporting fluid in two different coordinates: Cartesian and natural coordinates. Both the virtual work method and

the vectorial method are applied to generate the large strain formulations, in which deformation descriptions based

upon the total Lagrangian, the updated Lagrangian, and the Eulerian mechanics are taken into consideration. The new

ideas used in the model formulations deal with applications of the extensible elastica theory and the apparent tension

concept to handle combined action of the effect of axial deformation with large strain and behaviour of flow of

transported fluid inside the pipe including the effect of Poisson’s ratio. The present models cover nonlinear statics and

nonlinear dynamics, and provide flexibility in the choice of the independent variables used to define the elastic curves.

r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In the past five decades, flexible pipes have been employed extensively in numerous offshore engineering applications.

The most vital function of them is to transport fluids drilled from underneath ocean floor such as oil, gas, hydrocarbon,

and other crude resources, up to the production platform or drilling ship. In the deep-ocean mining industry, flexible

pipes play the role of the main module of the production system as shown in Fig. 1(a). In moderate sea-depth

applications, they are often used as the secondary part, linked to rigid risers as shown in Fig. 1b and c.

In the literature, there are many papers related to flexible pipe analysis as reviewed by Chakrabarti and Frampton

(1982), Ertas and Kozik (1987), Jain (1994) and Patel and Seyed (1995). It is remarkable that most of them omit the

effect of axial deformation of the pipe, and the influence of internal flow. Furthermore, all of them overlook the

Poisson’s ratio effect. As will be reviewed and discussed later, the individual effect of axial deformation, internal flow,

and Poisson’s ratio can be significant for behaviour of low flexibility pipes. It is therefore conceivable that combined

actions of all the effects become more important for behaviour of highly flexible pipes. In such cases, those effects

should be carefully examined, and large strain analysis is essential.

However, hitherto a mathematical treatment for the large strain analysis that takes into consideration the combined

actions of those effects has not been elucidated. Hence it is the objective of this paper: first to introduce and explain the

mathematical principles for large strain analysis of extensible flexible marine pipes conveying fluid from viewpoints of

the total Lagrangian, the updated Lagrangian, and the Eulerian mechanics; second to show how to formulate large

strain models of marine pipes in Cartesian and natural coordinates by relying upon the extensible elastica theory and
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Nomenclature

%Ae;Aeo;Ae sectional areas of the external fluid column at the three states
%Ai;Aio;Ai sectional areas of the internal fluid column at the three states
%AP;APo;Ap sectional areas of a pipe at the three states

aF ; aFP acceleration vectors of transported fluid relative to a fixed frame and a pipe

aFn; aFt; aFx; aFy accelerations of transported fluid relative to a fixed frame in normal, tangential, horizontal, and

vertical directions, respectively

aP acceleration vector of a pipe relative to a fixed frame

aPn; aPt; aPx; aPy accelerations of a pipe relative to a fixed frame in normal, tangential, horizontal, and vertical

directions, respectively
%B;Bo;B bending rigidities at the three states

CDn;CDt;Ca;CM coefficients of normal drag, tangential drag, added mass, and inertia
%De;Deo;De diameters of the external fluid column at the three states
%DP;DPo;DP diameters of a pipe at the three states

E elastic modulus
%f; fo; f external load vectors at the three states
%fH ; fHo; fH hydrodynamic force vectors at the three states

FHn;FHt;FHx;FHy hydrodynamic forces in normal, tangential, horizontal, and vertical directions, respectively

fHn; fHt; fHx; fHy hydrodynamic forces per unit length in normal, tangential, horizontal, and vertical directions,

respectively

FIPn;FIin;FIn normal inertial forces of a pipe, transported fluid, and overall system

FIPt;FIit;FIt tangential inertial forces of a pipe, transported fluid, and overall system

frn normal reaction between pipe wall and transported fluid per unit length

fn; ft; fx; fy external load components in Eqs. (123c) and (129g)

g gravitational acceleration
%H;Ho;H horizontal internal forces at the three states
#i; #j horizontal and vertical unit vectors in Cartesian system
%IP; IPo; IPmoments of inertia of a pipe at the three states
%M;Mo;M bending moments at the three states
%N;No;N axial forces at the three states

%me;meo;me masses of the external fluid column per unit length at the three states

%mi;mio;mi masses of the internal fluid column per unit length at the three states

%mP;mPo;mP masses of a pipe per unit length at the three states
%n; #no; #n normal unit vectors in natural system at the three states

pe; pi pressures of external and internal fluids
%Q;Qo;Q shear forces at the three states

%r; ro; r radii of curvatures at the three states

rF ; rFP position vectors of transported fluid relative to a fixed frame and a pipe

rP position vector of a pipe relative to a fixed frame

%s; so; s arc-length coordinates at the three states
%T;To;T true wall tensions at the three states
%Ta;Tao;Ta apparent tensions at the three states
%Te;Teo;Te effective tensions at the three states

Ttri apparent tension due to triaxial stress

t time (time derivative denoted by overdot such as qx=qt ¼ ’x)
%t; #to; #t tangential unit vectors in natural system at the three states

uo; u displacement vectors from state 1 to 2 and state 2 to 3

uo; u horizontal displacements from state 1 to 2 and state 2 to 3

uno; un normal displacements from state 1 to 2 and state 2 to 3
%V;Vo;V vertical internal forces at the three states

Vct;Vc current velocities at mean sea level and at any sea depth

VF ;VFP velocity vectors of transported fluid relative to a fixed frame and a pipe

VHn;VHt external hydrodynamic velocities in normal and tangential directions
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VHx;VHy external hydrodynamic velocities in horizontal and vertical directions
%Vi;Vio;Vi internal flow velocities at the three states

VP velocity vector of a pipe relative to a fixed frame

VPx;VPy;VPy horizontal, vertical, and rotational velocities of a pipe

Vw wave velocity

vo; v vertical displacements from state 1 to 2 and state 2 to 3

vno; vn tangential displacements from state 1 to 2 and state 2 to 3

WP;We;Wi weights of a pipe, the external fluid column, and the internal fluid column

%wa;wao;wa apparent weights per unit length at the three states

xo; x Cartesian vectors of displacements from state 1 to 2 and state 2 to 3

%x;xo; x horizontal Cartesian coordinates at the three states

%xt static offset

%y; yo; y vertical Cartesian coordinates at the three states

%yb; %yt vertical distances from bottom support to seabed and to sea surface

Greek symbols

a independent variable (its derivative q=qa denoted by ð0Þ)
gA; gG Almansi’s and Green’s strains

g; go; gd total, static, and dynamic updated Green strains

gn; gt relative velocities of external fluid in normal and tangential directions

%e; eo; e axial strains at the three states

e; eo; ed total, static, and dynamic axial strains ðed ¼ e� eoÞ
etri axial strain due to the tension Ttri

%ev; evo; ev volumetric strains of a pipe at the three states

eB axial strain at a fibre radius coordinate B
B a fibre radius coordinate
%y; yo; y rotational angles at the three states

%k;ko; k curvatures at the three states

n Poisson’s ratio

pan; pat; pax; pay total virtual works of apparent system in normal, tangential, horizontal, and vertical directions,

respectively

rP; re; ri densities of a pipe, external fluid, and internal fluid

sP end effect stress

st; sy;sr triaxial stress in Fig. 4(f)

t shear stress in pipe wall

tw wall shear friction between pipe wall and transported fluid
%8cv; 8cv; 8cv control volumes of a pipe at the three states
%8e; 8eo; 8evolumes of the external fluid column at the three states
%8i;8io; 8i volumes of the internal fluid column at the three states
%8P; 8Po; 8P volumes of a pipe at the three states

Subscripts

P pipe

e external fluid

i internal fluid

o static quantity

d dynamic quantity

n natural coordinates.
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the apparent tension concept; and finally to illustrate versatile and sophisticated models suitable for two-dimensional

large strain analysis of extensible flexible marine pipes conveying fluid.

1.1. Significance of effect of axial deformation

From a literature review, the effect of axial deformation on behaviour of marine cables was investigated by Huang

(1992), Chucheepsakul et al. (1995) and Chucheepsakul and Huang (1997). The effect on behaviour of suspended cables

was studied by Huddleston (1981), Shih and Tadjbakhsh (1984), Burgess and Triantafyllou (1988), Lin and Perkins

Fig. 1. Flexible marine pipes: (a) marine riser; (b) flexible pipe; and (c) hoseline.

S. Chucheepsakul et al. / Journal of Fluids and Structures 17 (2003) 185–224188



(1995), Triantafyllou and Yue (1994) and Tjavaras et al. (1996, 1998). The effect was included in analysis of low

flexibility marine risers by Chung and Whitney (1983), Chung et al. (1994), Chung and Cheng (1996) and Bernitsas and

Kokarakis (1988); Bernitsas et al. (1985).

It was reported that the effect of axial deformation on static behaviour of those structures is to increase static

displacements of low-tensioned cables, due to extensibility dominating; but to reduce the static displacement of high-

tensioned cables, due to pre-stressing dominating (Chucheepsakul et al., 1995; Chucheepsakul and Huang, 1997).

Although Bernitsas and Kokarakis (1988); Bernitsas et al. (1985) found that the effect on static behaviour of low

flexibility pipes was rather small, they did not provide evidence of the same result with the highly flexible pipes.

In relation to the dynamic behaviour of these structures, the effect of axial deformation is to increase dynamic stresses

(Chung and Whitney, 1983; Chung et al. (1994); Chung and Cheng, 1996), to reduce natural frequencies

(Chucheepsakul and Huang, 1997), and to provoke elastic mode transition of cable vibrations (Burgess and

Triantafyllou, 1988; Lin and Perkins, 1995). If the stress–strain relation is hysteretic, the effect can amplify damping of

dynamic strain in the axial direction (Triantafyllou and Yue, 1994). Several papers by Chung and Whitney (1983),

Chung et al. (1994), Chung and Cheng (1996) comment that the effect of axial deformation is crucial to dynamics of low

flexibility pipes and should be considered in the design of the pipe.

The interesting point in all the previous research is that the effect of axial deformation has been investigated by using

small-strain analysis that adopts quadratic expressions for strain definitions. This approach, however, is proper if, and

only if, the axial strain is small compared to unity (Fung, 1994). For highly flexible pipes, such an assumption is no

longer necessarily valid; thus, this paper proposes large strain modelling by employing the square-root expressions for

large strain definitions, as will be shown later.

1.2. Significance of influence of internal flow

Although transporting fluid is the main function, marine riser pipe analysis from the middle of the 1950s to the end of

the 1970s paid little attention to the influence of transported fluid. In the same period, research concerning mechanics of

pipes conveying fluid grew rapidly. Research work related to vibrations of straight and curved pipes can be found in the

papers by Housner (1952), Gregory and Pa.ıdoussis (1966), Pa.ıdoussis (1970) and Doll and Mote (1976). It was reported

that the internal flow reduced stability of the pipe and acted on the pipe like an end follower force (Thompson and

Lunn, 1981). As a result, it could engender divergence instability or buckling of simply supported pipes (Holmes, 1978),

and could induce flutter instability or snaking behaviour of cantilever pipes (Gregory and Pa.ıdoussis, 1966).

The lack of connection between research work on marine pipes and pipes conveying fluid has led to a misconception

amongst some authors. When the effect of internal flow on marine pipes was handled in the early 1980s, it was

considered that internal flow induced only friction forces to act on the pipe wall. However, researchers concerned with

pipes conveying fluid, such as Gregory and Pa.ıdoussis (1966), Pa.ıdoussis (1970), and Thompson and Lunn (1981), had

been well aware that the internal friction forces did not act directly on the pipe, but they affected the internal pressure

transmitted to the pipe wall, which yielded tensioning and pressure drop (Pa.ıdoussis, 1998). In addition, internal flow

generates not only the pressure effects, but also the other fictitious forces such as Coriolis and centrifugal forces.

By the end of the 1980s, the effect of internal flow on behaviour of marine pipes began to draw specific interest from a

number of researchers, and the misconception was remedied. It was reported that internal flow reduced structural

stiffness, provided negative damping (Irani et al., 1987), and induced additional large displacements of the pipes

(Chucheepsakul and Huang, 1994); reduction of natural frequencies of the pipes is slight at a low speed of internal flow,

but significant at a high speed of internal flow (Moe and Chucheepsakul, 1988; Wu and Lou, 1991); internal slug flow

can induce significant cyclic fatigue loading in deep water (Patel and Seyed, 1989); and simply supported marine riser

pipes transporting fluid lost stability by divergence (Chucheepsakul et al., 1999).

However, mathematical models used in most of those works do not consider the effects of geometric nonlinearity,

extensibility, and the Poisson’s ratio effect on the pipes, despite the fact that flexible marine pipes are inclined, initially

curved, significantly deflected and deformed. This shortcoming motivates the aim of this work to exhibit how to take

into account these effects in large strain formulations of flexible marine pipes conveying fluid. Revealing the interaction

between the transported fluid and the pipe subjected to these effects provides new understanding of the behaviour of

such systems.

1.3. Significance of Poisson’s ratio effect and fluid pressures

It will be shown later that the Poisson’s ratio effect and lateral actions of fluid pressures disturb the behaviour of

flexible marine pipes in three ways: first, altering structural stiffness; second, modifying internal flow characteristics; and

third, varying the apparent tension in the pipe.
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A review of the literature shows that while the first two effects have not been examined in marine pipe analysis, the

first effect has been included in marine cable analysis by Goodman and Breslin (1976). Even if the third effect on the

flexible marine pipes has been treated through the effective tension concept proposed by Sparks (1984), the Poisson’s

ratio effect is not fully taken into account.

As will be shown later, using the effective tension concept creates an error in evaluating the apparent tension arising in

the cross-section of the pipe, whenever the Poisson’s ratio is not equal to 0.5. The greater the difference of Poisson’s ratio

from 0.5, the higher the error grows, especially under a condition of severe fluid pressures. In order to avoid such an error,

this paper establishes the apparent tension concept instead of the effective tension concept. The detailed treatments of the

first two effects on mathematical models for large strain analysis of flexible marine pipes are also included.

1.4. Assumptions

The following assumptions are stipulated in the present mathematical modelling:

(a) The pipe materials are linearly elastic. Therefore, the Kelvin–Voigt internal dissipation or the dissipative recovery

is not relevant.

(b) At the undeformed state, the pipes are initially straight, and have no residual stresses.

(c) The pipes are sufficiently thick-walled to suppose that, ideally, their cross-sections remain circular after change of

cross-sectional size due to the Poisson’s ratio effect, so that the elastic rod theories are usable, and Brazier’s effect

or flattening of bent tubes is negligible.

(d) Longitudinal strain is large, but shear strain is insignificant for elastic rods with high slenderness ratio.

(e) Plane sections of the pipes remain plane at all states.

(f) The internal and external fluids are inviscid, incompressible, and irrotational. Their densities are uniform along arc

lengths of the pipes.

(g) The internal flow is the one-dimensional plug laminar flow.

(h) The general form of Morison’s equation is adopted for evaluating external hydrodynamic forces of external fluid.

The distributed couple induced by a flow asymmetry due to vortex shedding is neglected.

(i) The effect of rotary inertia is negligible.

2. Fundamentals of large strain modelling of flexible marine pipes conveying fluid

Large displacement behaviour of an extensible flexible marine pipe is depicted in Fig. 2. Firstly, the pipe is at rest and

unstretched at state 1: the undeformed state. Subsequently, as the pipe is subjected to time-independent loads due to

gravitation, steady current flow, and steady internal flow, the pipe experiences large displacement and forms the initial

condition of the pipe at state 2: the equilibrium state. Finally, under dynamic actions of disturbances such as waves,

unsteady current, and unsteady internal flow, the pipe sustains vibration about the equilibrium configuration at state 3:

the displaced state.

Corresponding to the three states, mathematical treatments of the following subjects are considered to be requisite for

large strain analysis of extensible marine pipes transporting fluid: (1) physical descriptions, (2) large strain

measurements, (3) the extensible elastica theory, (4) the apparent tension concept, and (5) dynamic interactions

between fluids and pipes. Details of these subjects are given as follows.

2.1. Physical descriptions

In order to define positions, motions, and deformations of an extensible flexible pipe and transported fluid, the

descriptions for geometry, kinematics, and deformation are necessary for large strain modelling.

(a) Geometric description. Fig. 2 uses the Cartesian coordinates ð#i; #jÞ and the intrinsic coordinates of arc length and

rotation ð#s; #yÞ as the global geometric descriptors, and employs the natural coordinates ð#n; #tÞ as the local geometric
descriptor. From the two global systems, there exist a number of choices of the independent variable. For

versatility of mathematical models, the symbol aA %x;xo; x; %y; yo; y; %s; so; s; %y; yo; y
� �

is introduced to represent any

independent variable, and the superscript ð0Þ denotes qðÞ=qa:
(b) Kinematic and deformation descriptions. As shown in Fig. 3, there may be three ways to describe motions and

deformations of a pipe and transported fluid. These involve the descriptions by total Lagrangian, updated

Lagrangian, and Eulerian coordinates as follows.
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Fig. 2. Schematics of large displacements and large deformations.
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Fig. 3. Physical descriptions: (a) total Lagrangian; (b) updated Lagrangian; and (c) Eulerian approaches.
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Definition 1. The coordinate that follows motion and deformation of a deformable body with respect to position,

direction, and size of the body at the original state (or the undeformed state herein) is said to be the total Lagrangian

descriptor (TL) as shown in Fig. 3(a).

Definition 2. The coordinate that follows motion and deformation of a deformable body with respect to position,

direction, and size of the body at the intermediate state (or the equilibrium state herein) is said to be the updated

Lagrangian descriptor (UL) as shown in Fig. 3(b).

Definition 3. The coordinate that follows motion and deformation of a deformable body with respect to position,

direction, and size of the body at the final state (or the displaced state herein) is said to be the Eulerian descriptor (EL) as

shown in Fig. 3(c).

2.2. Large strain measurements

Corresponding to the three deformation descriptors defined in the previous section, definitions of the total axial

strain e; the static strain eo; and the dynamic strain ed can be provided in the following three forms.

(i) For deformation descriptor TL:

e ¼
s0

%s0
� 1; ð1aÞ

eo ¼
s0o
%s0
� 1; ð1bÞ

ed ¼
s0 � s0o

%s0
: ð1cÞ

(ii) For deformation descriptor UL:

e ¼
s0 � %s0

s0o
; ð2aÞ

eo ¼ 1�
%s0

s0o
; ð2bÞ

ed ¼
s0

s0o
� 1: ð2cÞ

(iii) For deformation descriptor EL:

e ¼ 1�
%s0

s0
; ð3aÞ

eo ¼
s0o � %s0

s0
; ð3bÞ

ed ¼ 1�
s0o
s0
: ð3cÞ

Note that e ¼ eo þ ed ; and the differential arc lengths at the undeformed, the equilibrium, and the displaced states %s0; s0o;
and s0 may be expressed as

%s
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%x02 þ %y02

p
; ð4aÞ

s0o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð %x0 þ u0oÞ

2 þ ð %y0 þ v0oÞ
2

q
; ð4bÞ

in Cartesian coordinates:

s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð %x0 þ u0o þ u0Þ2 þ ð %y0 þ v0o þ v0Þ2

q
; ð4cÞ
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in natural coordinates:

s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu0n þ vny

0
oÞ
2 þ ðs0o þ v0n � uny

0
oÞ
2

q
: ð4dÞ

The large strain expressions given by Eqs. (1)–(3) can be exhibited in classical square-root forms of axial strains as

follows.

Definition 4. The large axial strain for flexible pipe analysis is defined by

e ¼

s0

%s0
� 1 ¼ eo þ

s0

s0o
� 1

� �
ð1þ eoÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2gG

p
� 1 for TL;

s0 � %s0

s0o
¼ eo þ

s0

s0o
� 1

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2gd

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2go

p
for UL;

1�
%s0

s0
¼ eo þ 1�

s0o
s0

� �
¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2gA

p
for EL:

8>>>>>>><
>>>>>>>:

ð5a2cÞ

In other words, the large axial strains are measured by means of ‘engineering strains’ or ‘relative elongations’. The

square-root expressions in Eqs. (5) demonstrate that the large axial strains are functions of the lower-order axial strains

such as the static updated Green strain go; the dynamic updated Green strain gd ; the total updated Green strain g; the
Green strain gG ; and the Almansi strain gA: By substituting Eqs. (4) into Eqs. (5), and undertaking some manipulation,

the expressions of these lower-order axial strains can be obtained as

go ¼
1

s02o
%x
0u0o þ %y

0v0o þ
u02o
2

þ
v02o
2

� 
; ð6aÞ

in Cartesian coordinates:

gd ¼
1

s02o
x0

ou0 þ y0ov0 þ
u02

2
þ

v02

2

� �
; ð6bÞ

in natural coordinates:

gd ¼
1

s02o
s0oðv

0
n � uny

0
oÞ þ

ðu0n þ vny
0
oÞ
2

2
þ
ðv0n � uny

0
oÞ
2

2

� 
; ð6cÞ

g ¼ go þ gd ; gG ¼ gðs0o=%s
0Þ2; gA ¼ gðs0o=s0Þ2: ð6d2fÞ

For lower-order large strain analysis, the dynamic axial strains in Eqs. (5) may be approximated by the two-term

binomial series such that

s0

s0o
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2gd

p
E1þ gd ;

s0o
s0
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2gd

p E1� gd : ð7a2bÞ

Inserting Eqs. (7) into Eqs. (5), the quadratic forms of axial strains are derived as Definition 5.

Definition 5. The nonlinear second-order axial strain for flexible pipe analysis is defined by

eE
eo þ gd ð1þ eoÞ for TL;

eo þ gd for UL and EL;

(
ð8a; bÞ

to which quadratic expressions of gd as shown in Eqs. (6b) and (6c) are applied.

For linear approximation, the second-order terms of gd are negligible as higher-order terms, so that Eq. (6b) is

linearized to

in Cartesian coordinates:

gdC
1

s0o2
ðx0

ou0 þ y0ov0Þ; ð9aÞ

in natural coordinates:

gdC
1

s0o
ðv0n � uny

0
oÞ: ð9bÞ

By utilizing Eq. (9), the linear forms of axial strains are derived as Definition 6.
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Definition 6. The linear axial strain for flexible pipe analysis is defined by Eqs. (8), to which linear approximation of gd

by Eqs. (9) is applied.

The large strain definition (Definition 4) is considered necessary for nonlinear dynamic analysis of flexible pipes, in

which large amplitude vibrations and large strain behaviour are concerned. The nonlinear second-order strain definition

(Definition 5) is desired for nonlinear dynamic analysis of flexible pipes, in which large amplitude vibrations with large

static and small dynamic strains are interested. The linear strain definition (Definition 6) is sufficient for dynamic

stability analysis and linear dynamic problems of flexible pipes, to which large static and infinitesimal dynamic strains

are relevant.

Variations of the axial strain among the three states bring about variations of differential arc length of the pipe, cross-

sectional properties of the pipe, and internal flow velocity of transported fluid as follows.

(a) Variations of differential arc length of the pipe. By solving Eqs. (1a) and (1b) for %s0; solving Eqs. (2b) and (2c) for s0o;
and solving Eqs. (3a) and (3c) for s0; one obtains

%s
0 ¼

s0o
1þ eo

¼
s0

1þ e
for TL; ð10aÞ

%s0

1� eo

¼ s0o ¼
s0

1þ ed

for UL; ð10bÞ

%s0

1� e
¼

s0o
1� ed

¼ s0 for EL: ð10cÞ

(b) Variations of cross-sectional properties of the pipe. The volumetric strain of the pipe is expressed as

ev ¼

d8P � d %8P

d %8P

¼
APs0

%AP %s0
� 1 ¼

AP

%AP

ð1þ eÞ � 1 for TL;

d8P � d %8P

d8Po

¼
APs0 � %AP %s

0

APos0o
¼

AP

APo

ð1þ ed Þ �
%AP

APo

ð1� eoÞ for UL;

d8P � d %8P

d8P

¼ 1�
%AP %s

0

APs0
¼ 1�

%AP

AP

ð1� eÞ for EL:

8>>>>>>><
>>>>>>>:

ð11a2cÞ

Based on the control volume approach (Goodman and Breslin, 1976), the pipe volume is conserved, and thus the

volumetric strain of the pipe ev ¼ evo ¼ 0: Once these conditions are applied to Eqs. (11), the cross-sectional areas of the
pipe at the three states can be related together as

%AP ¼ APoð1þ eoÞ ¼ APð1þ eÞ for TL; ð12aÞ

%AP ¼
APo

1� eo

¼
ð1þ ed ÞAP

ð1� eoÞ
for UL; ð12bÞ

%AP ¼
APo

1� eo

¼
AP

1� e
for EL: ð12cÞ

Corresponding to Eqs. (12), variations of diameter and moment of inertia of the circular pipe among the three states

are determined as

%DP ¼ DPo

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eo

p
¼ DP

ffiffiffiffiffiffiffiffiffiffiffi
1þ e

p
for TL; ð13aÞ

%DP ¼
DPoffiffiffiffiffiffiffiffiffiffiffiffiffi
1� eo

p ¼ DP

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ed

1� eo

s
for UL; ð13bÞ

%DP ¼
DPoffiffiffiffiffiffiffiffiffiffiffiffiffi
1� eo

p ¼
DPffiffiffiffiffiffiffiffiffiffiffi
1� e

p for EL; ð13cÞ

%IP ¼ IPoð1þ eoÞ
2 ¼ IPð1þ eÞ2 for TL; ð14aÞ
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%IP ¼
IPo

ð1� eoÞ
2
¼ IP

ð1þ ed Þ
2

ð1� eoÞ
2

for UL; ð14bÞ

%IP ¼
IPo

ð1� eoÞ
2
¼

IP

ð1� eÞ2
for EL: ð14cÞ

(c) Variations of internal flow velocity of transported fluid. From the fluid mechanics (Munson et al., 1994), the

continuity equation for transitions of a transportation rate among the three states can be displayed in the form

%Ai %Vi ¼ AioðsoÞVioðsoÞ ¼ Aiðs; tÞViðs; tÞ þ
q8cvðs; tÞ

qt
: ð15Þ

Nevertheless, because the pipe volume is conserved, time rate of control volume of the pipe q8cv=qt is zero. With

application of Eqs. (12), Eq. (15) yields the relationships of internal flow velocities at the three states as follows:

%Vi ¼
Vio

1þ eo

¼
Vi

1þ e
for TL; ð16aÞ

%Vi ¼ Vioð1� eoÞ ¼
ð1� eoÞVi

ð1þ ed Þ
for UL; ð16bÞ

%Vi ¼ Vioð1� eoÞ ¼ Við1� eÞ for EL: ð16cÞ

Physical interpretation of Eqs. (16) substantiates Propositions 1 and 2.

Proposition 1. The plug flow of incompressible fluid inside largely deformable pipes that is the steady uniform flow

ðq %Vi=qa ¼ q %Vi=qt ¼ 0Þ at the undeformed state, would become the steady nonuniform flow (qVio=qaa0; qVio=qt ¼ 0) at

the equilibrium state, and then the unsteady nonuniform flow (qVi=qaa0; qVi=qta0) at the displaced state.

Proposition 2. Extensibility of the pipes causes an increase of internal flow velocity of transported fluid.

2.3. The extensible elastica theory

A sophisticated strategy highlighted in this work is to adopt the extensible elastica theory for large strain

formulations of extensible flexible pipes. In Appendix A, the following extensible elastica theorems corresponding to the

three deformation descriptors are developed.

Theorem 1. For the Hookean material pipe, if the TL is employed to describe deformation of the pipe, then the constitutive

relations are

eB ¼ eþ B kð1þ eÞ � %k½ 	; ð17aÞ

N ¼ E %APe; ð17bÞ

M ¼ E %IP kð1þ eÞ � %k½ 	; ð17cÞ

dU ¼
Z
%s

fNdeþ Md½kð1þ eÞ � %k	g d%s ¼
Z
a
½Nds0 þ Mdðy0 � %y0Þ	 da; ð17dÞ

in which eB is the axial strain at any fibre radius B; E the elastic modulus, N the axial force, M the bending moment, and

U the strain energy of the pipe.

Theorem 2. For the Hookean material pipe, if the UL is employed to describe deformation of the pipe, then the constitutive

relations are

eB ¼ eþ B½kð1þ ed Þ � %kð1� eoÞ	; ð18aÞ

N ¼ EAPoe; ð18bÞ
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M ¼ EIPo½kð1þ ed Þ � %kð1� eoÞ	; ð18cÞ

dU ¼
Z
%s

fNdeþ Md½kð1þ ed Þ � %kð1� eoÞ	g dso ¼
Z
a
½Nds0 þ Mdðy0 � %y0Þ	 da: ð18dÞ

Theorem 3. For the Hookean material pipe, if the EL is employed to describe deformation of the pipe, then the constitutive

relations are

eB ¼ eþ B½k� %kð1� eÞ	; ð19aÞ

N ¼ EAPe; ð19bÞ

M ¼ EIP½k� %kð1� eÞ	; ð19cÞ

dU ¼
Z

s

fNdeþ Md½k� %kð1� eÞ	g ds ¼
Z
a
½Nds0 þ Mdðy0 � %y0Þ	 da: ð19dÞ

2.4. The apparent tension concept

Externally and internally flowing fluids interact with a pipe through hydrostatic and hydrodynamic pressures. The

apparent tension concept is proposed herein to represent the effect of hydrostatic pressures, while the effect of dynamic

pressures will be considered in the next section.

The apparent tension concept for handling the hydrostatic pressure effect of external and internal fluids is illustrated

in Fig. 4. First of all, Archimedes’ law, which will be used in the apparent tension concept, is recalled. As shown in

Fig. 4(a), equilibrium of an external fluid column in an external pressure field proves physically that the enclosing

external pressure field induces a vertical buoyancy force equal to the weight of the external fluid column reg8e: This
tenet is commonly referred to as the first law of Archimedes. A reverse viewpoint of the first law of Archimedes yields the

corollary that the enclosing internal pressure field generates the apparent weight of the internal fluid column rig8i:
It is remarkable that Archimedes’ principle is usable with the enclosing pressure fields. However, for marine pipes, the

pressure fields of external and internal fluids surround only external and internal side surfaces of the pipe segment, as

seen in Fig. 4(b). Both cut ends of the pipe segment are not subjected to the pressure fields, which are called the missing

pressures. Archimedes’ principle cannot therefore be used straightforwardly for marine pipe analysis. Fortunately, this

problem can be solved by the superposition technique to transform the real system into the apparent system of marine

pipes as follows.

Step 1: The total forces acting on the real system of the pipe column (the pipe plus transported fluid) as shown in

Fig. 4(b) are equal to the summation of the forces acting on the pipe columns in Figs. 4(c–e):

Fig: 4ðbÞ ¼ Fig: 4ðcÞ þ Fig: 4ðdÞ þ Fig: 4ðeÞ: ð20Þ

Step 2: The forces acting on the pipe column in Fig. 4(c) are equal to the summation of the forces acting on the pipe

columns in Figs. 4(f) and (g):

Fig: 4ðcÞ ¼ Fig: 4ðfÞ þ Fig: 4ðgÞ: ð21Þ

Step 3: The static pressures exerted on the pipe column in Fig. 4(f) are made enclosing the pipe column by adding in

the missing pressures at both cut ends of the pipe segment. However, the added pressures are nonexistent, so they must

be removed for balance by applying the opposite pressure fields at the both ends of the pipe in Fig. 4(g).

Step 4: After the pressure fields enclose the pipe segment, Archimedes’s principle is now applicable. Therefore, the

enclosing external and internal pressure fields induce the buoyancy force We and the internal fluid weight Wi:

We ¼ re8eg; Wi ¼ ri8ig: ð22a; bÞ

In addition, the enclosing pressure fields in Fig. 4(f) induce triaxial stresses, which in polar coordinates are: the radial

stress sr; the circumferential stress sy; and the tensile stress due to the missing pressures st: These triaxial stresses

provoke the axial force

Ttri ¼ EAPetri ¼ ð2n� 1ÞðpeAe � piAiÞ: ð22cÞ

Note that from the theory of elasticity (Timoshenko and Goodier, 1984):

etri ¼ ½st � nðsr þ syÞ	=E; ð22dÞ
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Fig. 4. Transformation from the real system to the apparent system.
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and the enclosing pressure fields in Fig. 4(f) yield

sy ¼ sP þ t; sr ¼ sP � t; sy þ sr ¼ 2sP; ð22e2gÞ

sP ¼ ðpiAi � peAeÞ=AP; ð22hÞ

where t is the shear stress in pipe wall, and sP the end effect stress (Sparks, 1984).

Step 5: The pipe column in Fig. 4(f) is decomposed into a combination of the pipe element in Fig. 4(h) and the

transported fluid element in Fig. 4(i):

Fig: 4ðfÞ ¼ Fig: 4ðhÞ þ Fig: 4ðiÞ: ð23Þ

The effect of the enclosing pressure fields is replaced by We and Ttri in Fig. 4(h), and by Wi in Fig. 4(i).

Step 6: The pipe column in Fig. 4(g) is decomposed into a combination of the pipe element in Fig. 4(j) and the

transported fluid element in Fig. 4(k):

Fig: 4ðgÞ ¼ Fig: 4ðjÞ þ Fig: 4ðkÞ: ð24Þ

The missing pressure peAe is entirely transmitted to the pipe element, because the transported fluid element cannot

resist tension.

Fig. 4 (continued).
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Step 7: The pipe column in Fig. 4(d) is decomposed into a combination of the pipe element in Fig. 4(l) and the

transported fluid element in Fig. 4(m):

Fig: 4ðdÞ ¼ Fig: 4ðlÞ þ Fig: 4ðmÞ: ð25Þ

Shear forces and bending moments are entirely transmitted to the pipe element, because the transported fluid element

cannot resist them.

Step 8: The pipe column in Fig. 4(e) is decomposed into a combination of the pipe element in Fig. 4(n) and the

transported fluid element in Fig. 4(o):

Fig: 4ðeÞ ¼ Fig: 4ðnÞ þ Fig: 4ðoÞ: ð26Þ

Step 9: Substituting Eqs. (21), (23)–(26) into Eq. (20) together with some manipulation, one can obtain the expression

Fig: 4ðbÞ ¼ ½Fig: 4ðhÞ þ Fig: 4ðjÞ þ Fig: 4ðlÞ þ Fig: 4ðnÞ	 þ ½Fig: 4ðiÞ þ Fig: 4ðkÞFig: 4ðmÞ þ Fig: 4ðoÞ	: ð27Þ

Fig. 4 (continued).
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The first bracket on the right-hand side of Eq. (27) represents the apparent system of the pipe as portrayed in Fig. 4(p),

while the second bracket expresses the apparent system of transported fluid as displayed in Fig. 4(q). Combination of

the apparent systems of the pipe and transported fluid in Eq. (27) yields the overall apparent system of the pipe column

that is subjected to the apparent weight wa and the apparent tension Ta as shown in Fig. 4(r).

Writing expressions for the apparent weight and the apparent tension generally for the three deformation descriptors,

one obtains

wa ¼ ðrP
*AP � re

*Ae þ ri
*AiÞg; ð28Þ

Ta ¼ E *APe ¼ T þ 2nðpe
*Ae � pi

*AiÞ; ð29Þ

in which *Aa ¼ %Aa for TL, *Aa ¼ Aao for UL, *Aa ¼ Aa for EL, and the subscript aAfP; e; ig:
Ability to transform the real system into the apparent system of the pipe column establishes Proposition 3 that

describes the apparent tension concept.

Proposition 3. The real system of the pipe column that is subjected to static external and internal pressures as shown in

Fig. 4(b) is equivalent to the overall apparent system of the pipe column that is subjected to the apparent weight and the

apparent tension as shown in Fig. 4(r).

On the other hand, the apparent tension may be expressed as

Ta ¼ Te þ Ttri; ð30Þ

where

Te ¼ T þ pe
*Ae � pi

*Ai ð31Þ

is referred to as the effective tension (Sparks, 1984). From Eqs. (29), it is seen that the condition Ta ¼ Te is achieved if,

and only if, n ¼ 0:5: This signifies that the effective tension concept is a subset of the apparent tension concept, and can be

evidently inaccurate, whenever realistic Poisson’s ratio of the pipe is significantly different from 0.5.

2.5. Dynamic interactions between fluids and pipes

For flexible marine pipes transporting fluid, dynamic interactions between fluid and pipe occur due to steady and

unsteady flows of external and internal fluids through the displaced pipe. Steady flows will cause quasi-static forces, and

unsteady flows will engender dynamic forces to act on the pipe wall. The flow outside the pipe is normally associated

with cross flows of ocean currents and waves, whereas the flow inside the pipe relates to the tangential flow of

transported fluid.

2.5.1. Hydrodynamic forces due to cross-flows of currents and waves

Based on the coupled Morison equation (Chakrabarti, 1990), the hydrodynamic forces exerted on flexible marine

pipes with large displacements in natural coordinates can be expressed as

fH ¼
fHn

fHt

( )
¼ 0:5reDe

CDngn gnj j
pCDtgt gtj j

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Viscous drag force

þ reAeCa

’gn

’gt

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Hydrodynamic mass force

þ reAe

’VHn

’VHt

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Froude2Krylov force

; ð32Þ

where overdot denotes qð Þ=qt; CDn and CDt are the normal and tangential drag coefficients, Ca the added mass

coefficient, VHn and VHt the normal and tangential velocities of currents and waves; and gn ¼ VHn � ’un and gt ¼
VHt � ’vn are the velocities of currents and waves relative to pipe velocities ’un and ’vn in normal and tangential directions,

respectively. For large strain consideration, the effect of cross-sectional changes of the pipe according to Eqs. (12) and

(13) has to be applied to Eq. (32).

In order to eliminate the difficulty of operating with absolute functions in Eq. (32), the signum function is introduced:

sgnðgÞ ¼
1 if gZ0;

�1 if go0:

(
ð33Þ
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Using the signum function, Eq. (32) can be manipulated into the form

fH ¼
fHn

fHt

( )
¼ �

C
a 0

0 C
a

� 
.un

.vn

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Added mass force

�
C

eqn 0

0 C
eqt

� 
’un

’vn

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Hydrodynamic damping force

þ
C

Dn
V2

Hn
þC

M
’VHn

C
Dt

V2
Ht
þC

M
’VHt

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Hydrodynamic excitation

; ð34Þ

where the c oefficients of equivalent damping and drag forces in the normal direction are

C
eqn ¼ C

Dn 2VHn � ’un½ 	; C
Dn ¼ 0:5reDeCDn sgnðgnÞ; ð35a; bÞ

the coefficients of equivalent damping and drag forces in the tangential direction are

C
eqt ¼ C

Dt½2VHt � ’vn	; C
Dt ¼ 0:5reDepCDt sgnðgtÞ; ð35c; dÞ

and the coefficients of added mass and inertia forces are

C
a ¼ reAeCa; C

M ¼ reAeCM ; ð35e; fÞ

in which CM ¼ 1þ Ca is the inertia coefficient.

In Cartesian coordinates, Eq. (34) can be transformed to

fH ¼
fHx

fHy

( )
¼ �

C
a 0

0 C
a

� 
.x

.y

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Added mass force

�
C

eqxC
eqxy

C
eqxyC

eqy

� 
’x

’y

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Hydrodynamic damping force

þ
C

Dx
V2

Hx
þ2C

Dxy1
VHxVHyþC

Dxy2
V2

Hy
þC

M
’VHx

C
Dy

V2
Hy

þ2C
Dxy2

VHxVHyþC
Dxy1

V2
Hx

þC
M

’VHy

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hydrodynamic excitation

;

ð36Þ

where VHx and VHy are the horizontal and vertical velocities of external fluid; the coefficients of equivalent damping and

drag forces in the horizontal direction are

C
eqx ¼ C

eqn cos
2 yþ C

eqt sin
2 y; C

Dx ¼ C
Dn cos

3 yþ C
Dt sin

3 y; ð37a; bÞ

the coefficients of equivalent damping and drag forces in the vertical direction are

C
eqy ¼ C

eqn sin
2 yþ C

eqt cos
2 y; C

Dy ¼ �C
Dn sin

3 yþ C
Dt cos

3 y; ð37c; dÞ

the coupling coefficient of equivalent hydrodynamic damping in the x � y plane is

C
eqxy ¼ ð�C

eqn þ C
eqtÞsin y cos y; ð37eÞ

and the coupling coefficients of drag forces in the x � y plane are

C
Dxy1 ¼ �C

Dn sin y cos
2 yþ C

Dt sin
2 y cos y; ð37fÞ

C
Dxy2 ¼ C

Dn sin
2 y cos yþ C

Dt sin y cos
2 y: ð37gÞ

At the equilibrium state, static loading is due only to the steady flow of external fluid. Therefore, the hydrodynamic

forces from Eqs. (34) and (36) are reduced to

fHo ¼
fHno

fHto

( )
¼

C
DnoV2

Hno

C
DtoV2

Hto

( )
; ð38Þ

fHo ¼
fHxo

fHyo

( )
¼

C
DxoV2

Hxo þ 2C
Dxy1oVHxoVHyo þ C

Dxy2oV2
Hyo

C
DyoV2

Hyo þ 2C
Dxy2oVHxoVHyo þ C

Dxy1oV2
Hxo

( )
; ð39Þ

respectively. Note that the additional subscripts ‘o’ on all variables designate the equilibrium-state parameters. For

example, C
Dno implies the equilibrium state of C

Dn; hence, Eq. (35b) uses equilibrium-state parameters to obtain

C
Dno ¼ 0:5reDeoCDn sgnðgnoÞ:

2.5.2. Hydrodynamic forces due to internal flow of transported fluid

Based on the control volume approach of Computational Fluid Dynamics, hydrodynamic forces due to flow of

transported fluid inside extensible flexible pipes with large deformation can be derived as follows. Let VF and VP

represent the velocity vectors of transported fluid and the pipe with respect to the fixed frame of reference, then the
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velocity vector of transported fluid relative to the pipe velocity is given by

VFP ¼ VFP
#t ¼ VFP qrP=qs ¼ VF � VP; ð40Þ

where VFP is the internal flow velocity function: VFP ¼ %Vi; VFP ¼ Vio; and VFP ¼ Vi at states 1, 2, and 3, respectively.

From Newton’s law of momentum conservation, hydrodynamic pressures due to internal flow induces the inertial

force on the transported mass:Z
8i

Bi d8i ¼
Z
8i

DðriVF Þ
Dt

d8i ¼
Z
8i

Dri

Dt
VF þ riaF

� 
d8i; ð41Þ

where Bi is the inertial force per unit control volume 8i; aF the acceleration vector of transported fluid with respect to

the fixed frame of reference, and

Dð Þ
Dt

¼
qð Þ
qt

þ ðVFP � rÞð Þ ¼
qð Þ
qt

þ
VFP

s0
qð Þ
qa

: ð42Þ

Note that

VFP:r ¼ VFP

qx

qs
#iþ

qy

qs
#jþ

qz

qs
#k

� 
q
qx

#iþ
q
qy

#jþ
q
qz

#k

� 
¼ VFP

q
qs

¼
VFP

s0
q
qa

: ð43Þ

Lemma 1 shows that Dri=Dt vanishes.

Lemma 1. The conservation condition of transported mass yields Dri=Dt ¼ 0:

Proof. Utilizing Eq. (40), Eq. (41) can be written asZ
8i

Bi d8i ¼
Z
8i

DðriVPÞ
Dt

� 
d8i þ

Z
8i

DðriVFPÞ
Dt

� 
d8i: ð44Þ

From the Reynolds transport theorem (Shames, 1992), the last integral is given byZ
8i

DðriVFPÞ
Dt

d8i ¼
q
qt

Z
8i

ðriVFPÞ d8i

� 
þ a

*Asi

VFPðriVFP dAsiÞ; ð45Þ

where Asi is the vector of internal control surface of the pipe *Asi:
Employing the Gauss divergence theorem, one can demonstrate that

a
*Ai

VFPðriVFP � dAsiÞ ¼
Z
8i

ðriVFP � rÞVFP þr � ðriVFPÞVFP

� �
d8i: ð46Þ

Substituting Eqs. (46) into Eq. (45) together with some manipulation, one obtains

Z
8i

DðriVFPÞ
Dt

d8i ¼
Z
8i

ri

qVFP

qt
þ ðVFP � rÞVFP

� 
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð1Þ

þ
qri

qt
þr � ðriVFPÞ

� 
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð2Þ

VFP

8>>><
>>>:

9>>>=
>>>; d8i: ð47Þ

Referring to Eq. (42), the bracketed term (1) is known as the acceleration of transported fluid aFP; whereas term (2) is

zero due to the continuity condition of conservation of mass. Thereby, Eq. (47) yields

DðriVFPÞ
Dt

¼ riaFP: ð48Þ

Since

DðriVFPÞ
Dt

¼
Dri

Dt
VFP þ riaFP;

and VFPa0; Eq. (48) is valid if, and only if,

Dri=Dt ¼ 0:& ð49Þ

Using Lemma 1 in Eq. (41), one can constitute Proposition 4.
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Proposition 4. Internal flow of transported fluid through the moving, deforming internal control volume of the pipe induces

the inertial force exerted on the pipe wall:

Bi ¼ riaF or Fi ¼ miaF ; ð50a; bÞ

where Fi and mi are the inertial force and the transported mass per unit length of the pipe.

From Eqs. (50), it is seen that determining the inertial force on the transported fluid needs the expression of

transported mass acceleration aF : Based on Eulerian mechanics (Huang, 1993), the velocity and acceleration of

transported fluid can be derived as

VF ¼ VP þ VFP ¼
qrP

qt
þ

VFP

s0
qrP

qa
; ð51Þ

aF ¼ aP þ aFP ¼
DVP

Dt
þ
DVFP

Dt
¼

D

Dt

qrP

qt

� �
þ

D

Dt

VFP

s0
qrP

qa

� �

¼
q2rP

qt2
þ

VFP

s0
q2rP

qa qt

� 
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

aP

þ
VFP

s0
q2rP

qa qt
þ

VFP

s0
q2rP

qa2

� 
þ

q
qt

VFP

s0

� �
þ

VFP

s0
q
qa

VFP

s0

� �� 
qrP

qa|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
aFP

: ð52Þ

Eq. (52) can be rearranged to obtain

aF ¼
q2rP

qt2|ffl{zffl}
ð1Þ

þ
2VFP

s0

� �
q2rP

qa qt|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ð2Þ

þ
VFP

s0

� �2q2rP

qa2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ð3Þ

þ
’VFP

s0|{z}
ð4Þ

þ
VFPV 0

FP

s02|fflfflfflffl{zfflfflfflffl}
ð5Þ

�
VFP ’s

0

s02
�

V2
FPs00

s03|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ð6Þ

2
664

3
775 qrP

qa
; ð53Þ

in which term (1) is the transported mass acceleration, (2) the coriolis acceleration, (3) the centripetal acceleration, (4)

the local acceleration due to unsteady flow, (5) the convective acceleration due to nonuniform flow, and (6) the relative

accelerations due to local coordinate rotation and displacement.

In 2-D Cartesian coordinates, at the displaced state:

VFP ¼ Vi; rP ¼ x#iþ y#j; s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02

p
; s0s00 ¼ x0x00 þ y0y00; s0 ’s0 ¼ x0 ’x0 þ y0 ’y0: ð54a2eÞ

Inserting Eqs. (54) into Eqs. (51) and (53), one obtains

VF ¼ ½ ’x þ Vix
0=s0	#iþ ’y þ Viy

0=s0
� �

#j; ð55Þ

aF ¼ .x þ
2

s0
�

x02

s03

� �
’x0 �

x0y0

s03

� �
’y0

� 
Vi þ

ky0

s0

� �
V2

i þ
DVi

Dt

� �
x0

s0

� �
#i

þ .y þ �
x0y0

s03

� �
’x0 þ

2

s0
�

y02

s03

� �
’y0

� 
Vi �

kx0

s0

� �
V2

i þ
DVi

Dt

� �
y0

s0

� �
#j: ð56Þ

Note that

ky0

s0
¼

y02

s04

� �
x00 �

x0y0

s04

� �
y00; �

kx0

s0
¼ �

x0y0

s04

� �
x00 þ

x02

s04

� �
y00: ð57a; bÞ

In 2-D natural coordinates, at the displaced state:

VFP ¼ Vi; ð58aÞ

qrP

qa
¼ s0#t; ð58bÞ

q2rP

qa2
¼ s0y0 #nþ s00#t; ð58cÞ

q2rP

qt2
¼ .un #nþ .vn

#t; ð58dÞ
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q2rP

qa qt
¼ s0 ’y#nþ ’s0#t: ð58eÞ

Exploiting Eqs. (58), Eqs. (51) and (53) yield

VF ¼ ’un #nþ ð’vn þ ViÞ#t; ð59Þ

aF ¼ .un þ 2Vi
’yþ kV2

i

� �
#nþ .vn þ

Vi ’s
0

s0
þ
DVi

Dt

� 
#t: ð60Þ

It is evident that the relative accelerations due to local coordinate rotation and displacement vanish in the natural

system.

At the equilibrium state, VFP ¼ Vio; ðx; yÞ ¼ ðxo; yoÞ; un ¼ vn ¼ 0; ðs; yÞ ¼ ðso; yoÞ; and the time-dependent terms

vanish. Thereby, Eqs. (55), (56), (59), and (60) are reduced to

VFo ¼ ðViox0
o=s0oÞ#iþ ðVioy0o=s0oÞ#j ¼ Vio

#t; ð61Þ

aFo ¼
koy0o

s0o

� �
V2

io þ
VioV 0

io

s0o

x0
o

s0o

� �
#iþ �

kox0
o

s0o

� �
V2

io þ
VioV 0

io

s0o

y0o
s0o

� �
#j ¼ koV2

io

� �
#nþ

VioV 0
io

s0o

� 
#t: ð62Þ

3. Virtual work formulations

Based on the method of virtual work, the fundamentals of large strain modelling proposed in Section 2 are employed

to develop large strain formulations of extensible flexible marine pipes transporting fluid as follows.

Step 1: Converting the real system into the apparent system of the marine pipe by the apparent tension concept

(Section 2.4).

Step 2: Applying the extensible elastica theory (Section 2.3) on the apparent system to obtain the stiffness or internal

virtual work equation.

Step 3: Expressing the equation of external virtual work induced by the apparent weight (Section 2.4), hydrodynamic

forces due to external and internal flows (Section 2.5), and inertial forces of the pipe.

Step 4: Applying the principle of virtual work to generate weak and strong forms of the large strain formulations of

the apparent system.

3.1. Step 2: Applying the extensible elastica theory on the apparent system

In Fig. 4(r), the overall apparent system is subjected to the apparent tension Ta in place of the axial force N of the real

system. Therefore, applying Eqs. (17d), (18d), and (19d) of the extensible elastica theory on the apparent system yields

the stiffness equation:

dUa ¼
Z
a
½Tads0 þ Mdðy0 � %y0Þ	 da; ð63Þ

where Ua is the strain energy of the apparent system,

Ta ¼ E *APe; ð64aÞ

M ¼

E %IP½kð1þ eÞ � %k	 for TL;

EIPo½kð1þ ed Þ � %kð1� eoÞ	 for UL;

EIP½k� %kð1� eÞ	 for EL:

8><
>: ð64bÞ

From the assumption that the pipe is straight in the undeformed state, and the basic formulas of differential geometry,

one has

%k ¼ %y0 ¼ 0; ð65aÞ

s0 ¼ x0 þ y0; ð65bÞ

y0 ¼ ðx00y0 � x0y00Þ=s02: ð65cÞ
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Substituting Eq. (65a) into Eq. (64b), and taking the first variation of Eqs. (65b) and (65c) in association with the

coordinate transformations of the displacement vectors, one obtains

M ¼ Bk; B ¼

E %IPð1þ eÞ for TL;

EIPoð1þ ed Þ for UL;

EIP for EL;

8><
>: ð66a; bÞ

in Cartesian coordinates:

ds0 ¼
x0

s0

� �
du0 þ

y0

s0

� �
dv0; ð67aÞ

dy0 ¼
1

s0
y0

s0

� �
du00 � k

x0

s0

� �
þ

s00

s02
y0

s0

� �� 
du0 �

1

s0
x0

s0

� �
dv00 � k

y0

s0

� �
�

s00

s02
x0

s0

� �� 
dv0; ð67bÞ

in natural coordinates:

ds0 ¼ dv0n � y0dun; ð68aÞ

dy0 ¼
q
qa

du0n þ y0dvn

s0

� 
: ð68bÞ

By substituting Eqs. (66)–(68) into Eq. (63), and then taking integrations by parts twice, the three forms of the internal

virtual work can be expressed as follows:

Form 1: In Cartesian coordinates:

dUa ¼
Z
a

Bk
s0

y0

s0

� �
du00 þ ðTa � Bk2Þ

x0

s0

� �
� Bk

s00

s02
y0

s0

� �� 
du0

�
Bk
s0

x0

s0

� �
dv00 þ ðTa � Bk2Þ

y0

s0

� �
þ Bk

s00

s02
x0

s0

� �� 
dv0

8>>><
>>>:

9>>>=
>>>; da; ð69aÞ

and in natural coordinates:

dUa ¼
Z
a

�Tay
0� �
dun þ Ta½ 	 dv0n þ M½ 	dy0

� �
da: ð69bÞ

Form 2 (after a first integration by parts): In Cartesian coordinates:

dUa ¼ ½M dy	at
ao
þ
Z
a
fH du0 þ V dv0g da; ð70aÞ

and in natural coordinates:

dUa ¼ ½M dy	at

ao
þ
Z
a
f�½Q	 du0n � ½Tay

0	 dun þ ½Ta	 dv0n þ ½Qy0	 dvng da; ð70bÞ

where

H ¼ Ta
x0

s0

� �
� Q

y0

s0

� �
; ð71aÞ

V ¼ Ta
y0

s0

� �
þ Q

x0

s0

� �
; ð71bÞ

Q ¼
M 0

s0
¼

ðBkÞ0

s0
: ð71cÞ

Form 3 (after a second integration by parts): In Cartesian coordinates:

dUa ¼ ½H du þ V dv þ M dy	at
ao
þ
Z
a
f½�H 0	du þ ½�V 0	dvg da; ð72aÞ

and in natural coordinates:

dUa ¼ ½Ta dvn � Q dun þ M dy	at

ao
þ
Z
a
f½Q0 � Tay

0	 dun þ ½�T 0
a � Qy0	 dvng da: ð72bÞ
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Note that

x0=s0 ¼ sin y; y0=s0 ¼ cos y; k ¼ y0=s0 ¼ ðx00y0 � x0y00Þ=s03:

3.2. Step 3: Expressing the equation of external virtual work

The equation of external virtual work is given by

dWa ¼ dWw þ dWH þ dWI ; ð73Þ

where Ww; WH ; and WI are the virtual works done by the apparent weight, hydrodynamic pressures, and inertial forces

of the pipe and transported fluid. In Cartesian coordinates:

dWw ¼ �
Z
a

was0 dv da; ð74aÞ

dWH ¼
Z
a
ðfHxs0Þ du þ ðfHys0Þdv
� �

da; ð75aÞ

dWI ¼ �
Z
a
ðmPaPx þ miaFxÞs0 du þ ðmPaPy þ miaFyÞs0 dv
� �

da: ð76aÞ

In natural coordinates:

dWw ¼ �
Z
a
½ð�was0 sin yÞ dun þ ðwas0 cos yÞ dvn	 da; ð74bÞ

dWH ¼
Z
a
ðfHns0Þ dun þ ðfHts

0Þ dvn

� �
da; ð75bÞ

dWI ¼ �
Z
a
ðmPaPn þ miaFnÞs0 dun þ ðmPaPt þ miaFtÞs0 dvn

� �
da: ð76bÞ

Note that aP ¼ aPx
#iþ aPy

#j ¼ .rP ¼ .x#iþ .y#j ¼ .u#iþ .v#j and aP ¼ aPn #nþ aPt
#t ¼ .un #nþ .vn

#t: The expressions of wa; fH ¼
fHn #nþ fHt

#t; fH ¼ fHx
#iþ fHy

#j; aF ¼ aFx
#iþ aFy

#j; and aF ¼ aFn #nþ aFt
#t are given by Eqs. (28), (34), (36), (56), and (60),

respectively.

Substituting Eqs. (74)–(76) into Eq. (73), in Cartesian coordinates one obtains

dWa ¼
Z
a

s0½fHx � mPaPx � miaFx	 du
� �

da

þ
Z
a

s0½�wa þ fHy � mPaPy � miaFy	 dv
� �

da; ð77aÞ

and in natural coordinates:

dWa ¼
Z
a

s0 wa sin yþ fHn � mPaPn � miaFn½ 	 dun

� �
da

þ
Z
a

s0 �wa cos yþ fHt � mPaPt � miaFt½ 	 dvn

� �
da: ð77bÞ

3.3. Step 4: Applying the principle of virtual work

From the principle of virtual work, the total virtual work of the apparent system is zero:

dpa ¼ dUa � dWa ¼ 0: ð78Þ

By substituting Eq. (69), (70), (72), and (77) into Eq. (78), the three weak forms of the total virtual work are obtained as

follows:
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Weak form 1: In Cartesian coordinates:

dpa ¼
Z
a

Bk
s0

y0

s0

� �
du00 þ ðTa � Bk2Þ

x0

s0

� �
� Bk

s00

s02
y0

s0

� �� 
du0 � s0½fHx � mPaPx � miaFx	 du

� �
da

þ
Z
a

�
Bk
s0

x0

s0

� �
dv00 þ ðTa � Bk2Þ

y0

s0

� �
þ Bk

s00

s02
x0

s0

� �� 
dv0 � s0½�wa þ fHy � mPaPy � miaFy	 dv

� �
da ¼ 0:

ð79aÞ

In natural coordinates:

dpa ¼
Z
a
f�Tay0 � s0½wa sin yþ fHn � mPaPn � miaFn	g dun da

þ
Z
a
f½Ta	 dv0n � s0½�wa cos yþ fHt � mPaPt � miaFt	 dvng da

þ
Z
a
f½M	 dy0g da ¼ 0: ð79bÞ

Weak form 2: In Cartesian coordinates:

dpa ¼ ½M dy	at
ao
þ
Z
a
fHdu0 � s0½fHx � mPaPx � miaFx	 dug da

þ
Z
a
fVdv0 � s0½�wa þ fHy � mPaPy � miaFy	dvg da ¼ 0: ð80aÞ

In natural coordinates:

dpa ¼ ½M dy	at
ao
þ
Z
a
f�Q du0n � ½Tay

0 þ s0ðwa sin yþ fHn � mPaPn � miaFnÞ	 dung da

þ
Z
a
fTadv0n þ ½Qy0 � s0ð�wa cos yþ fHt � mPaPt � miaFtÞ	dvng da ¼ 0: ð80bÞ

Weak form 3: In Cartesian coordinates:

dpa ¼ H du þ V dv þ M dy½ 	at

ao
þ
Z
a
f½�H 0 � s0ðfHx � mPaPx � miaFxÞ	 dug da

þ
Z
a
f½�V 0 � s0ð�wa þ fHy � mPaPy � miaFyÞ	 dvg da ¼ 0: ð81aÞ

In natural coordinates:

dpa ¼ ½Tadvn � Q dun þ M dy	at
ao

þ
Z
a
f½Q0 � Tay

0 � s0ðwa sin yþ fHn � mPaPn � miaFnÞ	 dung da

þ
Z
a
f½�T 0

a � Qy0 � s0ð�wa cos yþ fHt � mPaPt � miaFtÞ	 dvng da ¼ 0: ð81bÞ

3.3.1. Governing equations by weak form 1

In view of Eqs. (79), the following conditions are necessary and sufficient for dpa to vanish for all admissible

functions of virtual displacements.

In Cartesian coordinates:

dpax ¼ 0 :

Z
a

Bk
s0

y0

s0

� �
du00 þ ðTa � Bk2Þ

x0

s0

� �
� Bk

s00

s02
y0

s0

� �� 
du0 � s0½fHx � mPaPx � miaFx	 du

� �
da ¼ 0; ð82Þ

dpay ¼ 0 :

Z
a

�
Bk
s0

x0

s0

� �
dv00 þ ðTa � Bk2Þ

y0

s0

� �
þ Bk

s00

s02
x0

s0

� �� 
dv0 � s0½�wa þ fHy � mPaPy � miaFy	 dv

� �
da ¼ 0:

ð83Þ
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In natural coordinates:

dpan ¼ 0 :

Z
a

Bk
s0

� 
du00n � Bk

s00

s02

� 
du0n þ ½�Tay

0 � s0ðwa sinyþ fHn � mPaPn � miaFnÞ	 dun

� �
da ¼ 0; ð84Þ

dpat ¼ 0 :

Z
a

Ta þ Bk2
� �

dv0n þ
Bk
s0
ðy00 � ks00Þ � s0ð�wa cos yþ fHt � mPaPt � miaFtÞ

� 
dvn

� �
da ¼ 0: ð85Þ

3.3.2. Governing equations by weak form 2

Similarly, in view of Eqs. (80), the following conditions have to be valid.

In Cartesian coordinates:

dpax ¼ 0 :

Z
a
fHdu0 � s0½fHx � mPaPx � miaFx	 dug da ¼ 0; ð86Þ

dpay ¼ 0 :

Z
a
fVdv0 � s0½�wa þ fHy � mPaPy � miaFy	 dvg da ¼ 0; ð87Þ

with the natural boundary condition of bending moment:

½M dy	at
ao
¼ 0: ð88Þ

In natural coordinates:

dpan ¼ 0 :

Z
a
f�Qdu0n � ½Tay0 þ s0ðwa sin yþ fHn � mPaPn � miaFnÞ	 dung da ¼ 0; ð89Þ

dpat ¼ 0 :

Z
a
fTadv0n þ ½Qy0 � s0ð�wacosyþ fHt � mPaPt � miaFtÞ	 dvng da ¼ 0; ð90Þ

with the same boundary condition as Eq. (88).

3.3.3. Governing equations by weak form 3

Likewise, the necessary and sufficient conditions of Eqs. (81) yield the weak form 3.

In Cartesian coordinates:

dpax ¼ 0 :

Z
a
f½�H 0 � s0ðfHx � mPaPx � miaFxÞ	 dug da ¼ 0; ð91Þ

dpay ¼ 0 :

Z
a
f½�V 0 � s0ð�wa þ fHy � mPaPy � miaFyÞ	 dvg da ¼ 0; ð92Þ

with the natural boundary conditions of horizontal and vertical forces, and bending moment:

½H du þ V dv þ M dy	at
ao
¼ 0: ð93Þ

In natural coordinates:

dpan ¼ 0 :

Z
a
f½Q0 � Tay

0 � s0ðwa sin yþ fHn � mPaPn � miaFnÞ	 dung da ¼ 0; ð94Þ

dpat ¼ 0 :

Z
a
f½�T 0

a � Qy0 � s0ð�wa cos yþ fHt � mPaPt � miaFtÞ	 dvng da ¼ 0; ð95Þ

with the natural boundary conditions of apparent tension, shear force, and bending moment:

½Ta dvn � Q dun þ M dy	at

ao
¼ 0: ð96Þ

It is important to make a decision which forms of governing equations should be used. In the governing equations by

weak form 1, there is no natural boundary condition (BC). So if those equations are employed, all natural BCs may be

unconstrained. Another choice is using the governing equations by weak form 2 such that all essential BCs and some

natural BCs such as Eq. (88) would have to be constrained. On the other hand, if the governing equations by weak form

3 are selected, all essential BCs and all natural BCs such as Eqs. (93) and (96) need to be constrained.
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3.3.4. Strong formulations by weak form 3

By considering that all virtual displacements du; dv; dun and dvn in Eqs. (91), (92), (94) and (95) are nonzero, the

following strong formulations are achieved:

(i) Force-based strong form. In Cartesian coordinates:

SFx ¼ 0 : �H 0 � s0ðfHx � mPaPx � miaFxÞ ¼ 0; ð97Þ

SFy ¼ 0 : �V 0 � s0ð�wa þ fHy � mPaPy � miaFyÞ ¼ 0: ð98Þ

In natural coordinates:

SFn ¼ 0 : Q0 � Tay0 � s0ðwa sin yþ fHn � mPaPn � miaFnÞ ¼ 0; ð99Þ

SFt ¼ 0 : �T 0
a � Qy0 � s0ð�wa cos yþ fHt � mPaPt � miaFtÞ ¼ 0: ð100Þ

If the right-hand sides of Eqs. (97)–(100) are considered as the residuals, one can demonstrate that based on the

Galerkin method, Eqs. (91), (92), (94) and (95) yield the weighted residual forms of Eqs. (97)–(100), respectively. This

fact indicates that the governing equations obtained from the weak variational method and the Galerkin residual

method, are the same. As a result, if both methods used the same approximating functions, their solutions would be

identical.

The vector expressions of Eqs. (97)–(100) are given by

�P0 � s0ð�wa
#jþ fH � mPaP � miaF Þ ¼ 0; ð101Þ

where the internal force vectors P are represented by

P0
XY ¼

H 0

V 0

( )
and P0

NT ¼
Tay

0 � Q0

T 0
a þ Qy0

( )
¼

y0=s0 �x0=s0

x0=s0 y0=s0

" #
H 0

V 0

( )
; ð102Þ

in Cartesian and natural coordinate systems, respectively.

(ii) Displacement-based strong form. Based on Eqs. (71a)–(71c), one can demonstrate that

H ¼ ðTa � Bk2Þ
x0

s0
� Bk

s00

s02

� �
y0

s0

� �� 
�

Bk
s0

y0

s0

� �� 0
; ð103aÞ

V ¼ ðTa � Bk2Þ
y0

s0
� Bk

s00

s02

� �
x0

s0

� �� 
þ

Bk
s0

x0

s0

� �� 0
; ð103bÞ

consequently, one obtains

P0 ¼ ðTa � Bk2Þ
r0P
s0
� B

s00

s03

� �
q
qa

r0P
s0

� �� 0
�

B

s02
q
qa

r0P
s0

� �� 00
: ð104Þ

Note that

q
qa

r0P
s0

� �
¼

q
qa

x0

s0

� �
#iþ

q
qa

y0

s0

� �
#j ¼ ðky0Þ#iþ ð�kx0Þ#j ¼ #t

0
¼ y0 #n: ð105Þ

Utilizing Eqs. (53) and (104), Eq. (101) can be transformed into the displacement-based form:

s0ðmP þ miÞ
q2rP

qt2
þ s0mi

2VFP

s0

� �
q2rP

qa qt
þ

B

s02
q
qa

r0P
s0

� �� 00

� ðTa � Bk2Þ
r0P
s0
� B

s00

s03

� �
q
qa

r0P
s0

� �� 0
þs0mi

VFP

s0

� �2q2rP

qa2

þ s0mi
VFPV 0

FP

s02
�

VFP ’s
0

s02
�

V2
FPs00

s03

� 
qrP

qa
¼ s0fH � s0wa

#j� s0mi

’VFP

s0

� 
qrP

qa
: ð106Þ

If a ¼ s is used and the internal flow effect is excluded, Eq. (106) is reduced to

mP.rP þ ðBr00PÞ
00 � ½ðTa � Bk2Þr0P	

0 ¼ fH � wa
#j; ð107Þ

which is compatible with the vector equation of motion of slender rods given by Garrett (1982).
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4. Vectorial formulation

Based on the vectorial method, the fundamentals of large strain modelling proposed in Section 2 are employed to

develop large strain formulations of extensible flexible marine pipes transporting fluid as follows.

Step 1: Converting the real system of the pipe column into the apparent systems of the pipe and transported fluid by

the apparent tension concept (Section 2.4).

Step 2: Using the Newtonian derivation for the apparent systems of the pipe and transported fluid.

Step 3: Integrating the individual systems of the pipe and transported fluid into the overall apparent system, which is

subjected to the apparent weight (Section 2.4), hydrodynamic forces exerted by external and internal flows (Section 2.5),

and inertial forces of the pipe.

Step 4: Applying the extensible elastica theory (Section 2.3) on the apparent system to obtain the constitutive

equations.

4.1. Step 2: Using the Newtonian derivation for the apparent systems

Consider Fig. 4(q). The apparent system of the transported fluid element with the length s0 da is subjected to (i) the

internal pressure pi; (ii) the internal fluid weight mig; (iii) the inertial forces miaFn and miaFt; and (iv) the normal reaction
frn and the wall-shear friction tw: Note again that a could be any parameter used to define the elastic curve of the pipe,

and ð Þ0 ¼ qð Þ=qa: Applying Newton’s second law in normal and tangential directions, one obtainsX
Fn ¼ 0 : frns0 ¼ ðpiAiÞy

0 � ðmig sin y� miaFnÞs0; ð108Þ

X
Ft ¼ 0 : tws0 ¼ ðpiAiÞ

0 þ ðmig cos yþ miaFtÞs0; ð109Þ

in which ðs; yÞ are the coordinates of arc length and rotation. Similarly, for the apparent system of the pipe element as

shown in Fig. 4(p), applying Newton’s second law in normal and tangential directions yieldsX
Fn ¼ 0 : frns0 ¼ �Q0 þ ðT þ Ttri þ peAeÞy

0 þ ½fHn þ ðmP � meÞg sin y� mPaPn	s0; ð110Þ

X
Ft ¼ 0 : tws0 ¼ Qy0 þ ðT þ Ttri þ peAeÞ

0 þ ½fHt � ðmP � meÞg cos y� mPaPt	s0; ð111Þ

X
Mo ¼ 0 : M 0 ¼ Qs0; ð112Þ

where T ; Q; and M are the true wall tension, shear, and bending moment, respectively, pe the external pressure, fHn and

fHt the hydrodynamic forces of external fluid given by Eq. (34), mPg the pipe weight, �meg the buoyancy force, mPaPn

and mPaPt the inertial forces of the pipe, and Ttri the tension induced by triaxial pressures given by Eq. (22c).

4.2. Step 3: Integrating the individual systems of the pipe and transported fluid into the overall apparent system

The relationship between Eqs. (108) and (110), and Eqs. (109) and (111), respectively indicates that the interaction

between the pipe and the transported fluid is such that physically the reaction frn and the friction t have the effects of:

* transmitting the effect of hydrostatic and hydrodynamic pressures of transported fluid represented by the right-hand

side terms in Eqs. (108) and (109) into the pipe wall through the left-hand side terms in Eqs. (110) and (111), and
* conversely, transmitting the effect of resultant forces in pipe wall represented by the right-hand side terms in

Eqs. (110) and (111) into transported fluid through the left-hand side terms in Eqs. (108) and (109).

The former effect induces deformation of the pipe, and the latter alters the characteristics of the internal flow of

transported fluid as described by Proposition 1.

The interaction links together the individual systems of the pipe and transported fluid into the overall system. Using

this fact, one substitutes Eq. (108) into Eq. (110), and Eq. (109) into Eq. (111) to obtain

SFn ¼ 0 : Q0 � Tay
0 � s0ðwa sin yþ fHn � mPaPn � miaFnÞ ¼ 0; ð113Þ

SFt ¼ 0 : �T 0
a � Qy0 � s0ð�wa cos yþ fHt � mPaPt � miaFtÞ ¼ 0; ð114Þ

where wa and Ta are referred to as the apparent weight and the apparent tension, as given by Eqs. (28) and (29). The

governing differential Eqs. (112)–(114) describe the nonlinear behaviour of the overall apparent system of the pipe.
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Comparing Eqs. (113) and (114) with Eqs. (99) and (100), we can see that the vectorial method yields the same force-

based strong formulation as that obtained from the virtual work method. Thus exact agreement between the virtual

work and vectorial formulations is confirmed.

4.3. Step 4: Applying the extensible elastica theory on the apparent system

On the apparent system, the axial force appears to be the apparent tension Ta rather than the true wall axial force N

of the real system. Applying the extensible elastica theory on the apparent system therefore deals with replacing the

axial force N in the constitutive Eqs. (17b), (18b) and (19b) by the apparent tension Ta: As a result, Eqs. (64) are

obtained as the constitutive equations of the apparent system.

Based on the foregoing derivations along with the geometric relations, the governing equations for the vectorial

formulation are summarized as follows:

(a) Geometric relations:

x0=s0 ¼ sin y; y0=s0 ¼ cos y; k ¼ y0=s0 ¼ ðx00y0 � x0y00Þ=s03: ð115a2cÞ

(b) Constitutive equations:

Ta ¼ E *APe; M ¼ Bk: ð116a; bÞ

(c) Equilibrium equations:

M 0 ¼ s0Q; ð117Þ

Q0 ¼ Tay
0 þ s0½fHn þ wa sin y� ðmPaPn þ miaFnÞ	; ð118Þ

T 0
a ¼ �Qy0 � s0½fHt � wa cos y� ðmPaPt þ miaFtÞ	: ð119Þ

5. Nonlinear dynamic, large amplitude vibration models

Based on the virtual work and the vectorial formulations, the governing equations describing nonlinear dynamics of

the flexible marine pipe have been achieved in the three weak forms such as Eqs. (82)–(85), (86)–(90), and (91)–(96), and

in the one strong form such as Eqs. (97)–(100), or Eqs. (101) and (106), or Eqs. (115)–(119). Hence, large amplitude

vibration models of the pipe may be generated in four ways, namely from any of the three weak forms or the strong

form. However, if the weak forms are employed, the intermediate procedure will require application of some

approximate method such as the Rayleigh–Ritz method, the assumed-modes method, or the finite element method. A

drawback is that these methods are applicable to self-adjoint systems alone. On the other hand, the models obtained via

this approach are concerned with integral equations.

On the other hand, in the case where the strong form is exploited for creating the models, there is no need for any

approximate method to be used during the process, and the obtained models deal with differential equations. This yields

the possibility of using a broad range of numerical solution methods, including the weighted residuals methods, which

are applicable to both self-adjoint and nonself-adjoint systems. For the sake of generality in obtaining the model

solution, the strong form thus seems preferable to the weak forms. Derivation of the nonlinear dynamic models based

on the strong form given by Eq. (106) is as follows.

5.1. Large amplitude vibration models in the Cartesian system

By utilizing Eqs. (54) and introducing the position vector in the Cartesian system

x ¼ x yf gT; ð120aÞ

one has the gyroscopic matrix

g ¼
miVi

s02
2s02 � x02 �x0y0

�x0y0 2s02 � y02

" #
; ð120bÞ
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the bending stiffness matrices

kb1 ¼
B

s05
y02 �x0y0

�x0y0 x02

" #
; kb2 ¼

Bk
s04

2x0y0 y02 � x02

y02 � x02 �2x0y0

" #
; ð120c; dÞ

and the axial stiffness matrices

kt1 ¼
ðTa � miV

2
i Þ

s03
�y02 x0y0

x0y0 �x02

" #
; kt2 ¼ �

T 0
a � miViV

0
i

s0

� �
1 0

0 1

" #
; ð120e; fÞ

and one can express that

s0mi
VFP

s0

� �2q2rP

qa2
�

V2
FPs00

s03

� �
qrP

qa

" #
¼ miV

2
i

r0P
s0

� �0

; ð121aÞ

s0mi
2VFP

s0

� �
q2rP

qa qt
�

VFP
’s0

s02

� �
qrP

qa

� 
¼ g ’x0 ð121bÞ

B

s02
q
qa

r0P
s0

� �
¼ kb1x

00; ð121cÞ

ðTa � Bk2Þ
r0P
s0
� B

s00

s03

� �
q
qa

r0P
s0

� �
¼ Ta

x0

s0
� kb2x

00; ð121dÞ

Ta

r0P
s0

� �0

�miV
2
i

r0P
s0

� �0

¼ �kt1x
00 � kt2x

0: ð121eÞ

By substituting Eqs. (36) and (121) into Eq. (106) together with some manipulation, the nonlinear dynamic, large

amplitude vibration model in the Cartesian system is obtained as

m .xþ c ’xþ g ’x0 þ ðkb1x
00Þ00 þ ðkb2x

00Þ0 þ kt1x
00 þ kt2x

0 ¼ f; ð122Þ

where the total mass matrix is

m ¼ s0ðmP þ mi þ C
a Þ

1 0

0 1

" #
; ð123aÞ

the hydrodynamic damping matrix is

c ¼ s0
C

eqx C
eqxy

C
eqxy C

eqy

" #
; ð123bÞ

and the external load vector is

f ¼
fx

fy

( )
¼ s0

C
DxV2

Hx þ 2C
Dxy1VHxVHy þ C

Dxy2V
2
Hy þ C

M
’VHx � mi

’Vix
0=s0

C
DyV2

Hy þ 2C
Dxy2VHxVHy þ C

Dxy1V
2
Hx þ C

M
’VHy � wa � mi

’Viy
0=s0

( )
: ð123cÞ

In Eq. (122), the effect of large axial strain and the Poisson’s ratio effect contribute in all the coefficient matrices,

especially to the terms of the combined tension Ta � miV
2
i and the tension gradient T 0

a � miViV
0
i in the axial stiffness

matrices. It is also evident that the effect of transported fluid is

* to add the inertial force of transported mass into the total mass matrix,
* to provide the negative damping force in the gyroscopic matrix,
* to reduce the internal tension and axial stiffness of the system in the axial stiffness matrices,
* to provide an excitation term in the external load vector.
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5.2. Large amplitude vibration models in the natural system

Introducing the bending coefficients in the natural system

b1n ¼
B

s03
; b2n ¼

2B0

s03
�
3B

s03
s00

s0

� �
; b3n ¼

B0

s03
�

B

s03
s00

s0

� �
; ð124a2cÞ

b4n ¼
B00

s03
�
3B0

s03
s00

s0

� �
�

B

s03
s000

s0

� �
þ
3B

s03
s00

s0

� �2

; ð124dÞ

one can express that

Q ¼
ðBkÞ0

s0
¼

1

s0
q
qa

B
y0

s0

� �
¼ b1nðs0y

00Þ þ b3nðs0y
0Þ; ð125Þ

Q0 ¼
ðBkÞ0

s0

� 0
¼ b1nðs0y

000Þ þ b2nðs0y
00Þ þ b4nðs0y

0Þ; ð126Þ

where the expressions for s0 and y can be determined from the geometric relations

s0 sinðy� yoÞ ¼ u0n þ vny
0
o; s0 cosðy� yoÞ ¼ s0o þ v0n � uny

0
o; ð127a; bÞ

s02 ¼ ðu0n þ vny
0
oÞ
2 þ ðs0o þ v0n � uny

0
oÞ
2; tanðy� yoÞ ¼

u0n þ vny
0
o

s0o þ v0n � uny0o
: ð127c; dÞ

By substituting Eqs. (34), (58a), (60), (125), and (126) into Eq. (101) together with some manipulation, the large

amplitude vibration model in the natural system is obtained as

m
.un

.vn

( )
þ cn

’un

’vn

( )
þ gn

s0 ’y

’s0

( )
þ kb1n

s0y000

s0y0y00

( )
þ kb2n

s0y00

s0y02

( )
þ kt1n

s0y0

0

( )
þ kt2n

0

s0

( )
¼ fn; ð128Þ

where the hydrodynamic damping matrix is

cn ¼ s0
C

eqn 0

0 C
eqt

" #
; ð129aÞ

the gyroscopic matrix is

gn ¼ miVi

2 0

0 1

" #
; ð129bÞ

the bending stiffness matrices are

kb1n ¼
b1n 0

0 �b1n

" #
; kb2n ¼

b2n 0

0 �b3n

" #
; ð129c; dÞ

the axial stiffness matrices are

kt1n ¼ b4n �
ðTa � miV

2
i Þ

s0

� 
1 0

0 0

" #
; kt2n ¼ �

T 0
a � miViV

0
i

s0

� �
0 0

0 1

" #
; ð129e; fÞ

and the external load vector is

fn ¼
fn

ft

( )
¼ s0

C
DnV2

Hn þ C
M

’VHn þ wa sin y

C
DtV

2
Ht þ C

M
’VHt � wa cos y� mi

’Vi

( )
: ð129gÞ

It is evident that in the natural coordinate system there is no coupling term in all the coefficient matrices. Note that

for the lower order analysis, the following approximations by two-term binomial expansion may be used in Eq. (128):

s0Es0o þ v0n � uny
0
o; yEyo þ ðu0n þ vny

0
oÞ=s0; ð130a; bÞ

’s0E’v0n � ’uny
0
o; s0 ’yE ’u0n þ ’vny

0
o; s0y0Es0oy

0
o þ u00n þ 2v0ny

0
o; ð130c2eÞ
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s0y00Es0oy
00
o þ u000n þ v00ny

0
o; s0y000Es0oy

000
o þ u0000n þ v000n y

0
o; ð130f ; gÞ

s0y02Es0oy
02
o þ 2u00ny

0
o; s0y0y00Es0oy

0
oy

00
o þ u000n y

0
o: ð130h; iÞ

5.3. First-order models for large amplitude vibrations

Once Eqs. (36) and (56) are substituted into Eqs. (97) and (98), the second-order model of large amplitude vibrations

of the pipe is established. To reduce the second-order system to the first-order system, the velocity expressions following

Eqs. (131a)–(131c) are introduced. By adopting Eqs. (115)–(117) and (123c), the first-order model can be obtained as

qx

qt
¼ VPx; ð131aÞ

qy

qt
¼ VPy; ð131bÞ

qy
qt

¼ VPy; ð131cÞ

qx

qa
¼ s0 sin y; ð132aÞ

qy

qa
¼ s0 cos y; ð132bÞ

qy
qa

¼ s0
M

B
; ð132cÞ

qM

qa
¼ s0ðV sin y� H cos yÞ; ð132dÞ

qH

qa
¼ s0ðmP þ mi þ C

a Þ
qVPx

qt
þ miVið2� sin2 yÞ

qVPx

qa
� miVi sin y cos y

qVPy

qa

þ s0 C
eqxVPx þ C

eqxyVPy þ miV
2
i

M

B
cos yþ

miViV
0
i

s0
sin y

� �
� fx; ð132eÞ

qV

qa
¼ s0ðmP þ mi þ C

a Þ
qVPy

qt
� miVi sin y cos y

qVPx

qa
þ miVið2� cos2 yÞ

qVPy

qa

þ s0 C
eqxyVPx þ C

eqyVPy � miV
2
i

M

B
sin yþ

miViV
0
i

s0
cos y

� �
� fy: ð132fÞ

If a ¼ s is used, and hydrodynamic effects due to external flow, and unsteady, nonuniform internal flow are excluded,

Eqs. (132) become

qx

qs
¼ sin y; ð133aÞ

qy

qs
¼ cos y; ð133bÞ

qy
qs

¼
M

B
; ð133cÞ

qM

qs
¼ V sin y� H cos y; ð133dÞ

qH

qs
¼ ðmP þ miÞ

qVPx

qt
þ 2miViVPy cos yþ miV

2
i

M

B
cos y; ð133eÞ

qV

qs
¼ ðmP þ miÞ

qVPy

qt
� 2miViVPy sin y� miV

2
i

M

B
sin yþ ðmP þ miÞg: ð133fÞ
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Note that

qVPx

qt
¼

q2x
qt2

; VPy cos y ¼
qVPx

qs
¼

q2x
qs qt

; �VPy sin y ¼
qVPy

qs
¼

q2y
qs qt

; ð134a; bÞ

and

qVPy

qt
¼

q2y

qt2
;

M

B
cos y ¼

qy
qs

qy

qs
¼

q2x
qs2

; �
M

B
sin y ¼ �

qy
qs

qx

qs
¼

q2y
qs2

: ð134c; dÞ

Eqs. (133) describe the nonlinear dynamics of an onshore pipe steadily conveying fluid (Atanackovic, 1997; Pa.ıdoussis,

1998).

6. Nonlinear static equilibrium models

The static equilibrium models are derived by eliminating the time-dependent terms in the nonlinear dynamic

equations. As a result, all parameters at the displaced state contained in the nonlinear dynamic equations will alter to

the parameters at the equilibrium state for nonlinear static equilibrium models.

6.1. Nonlinear static models in the Cartesian system

Eliminating the time-dependent terms in Eq. (122), and replacing the variables at the displaced state by those at the

equilibrium state, one obtains the static equilibrium model as

ðkb1ox
00

oÞ
00 þ ðkb2ox

00
oÞ

0 þ kt1ox
00

o þ kt2ox
0
o ¼ fo; ð135Þ

where the position vector is

xo ¼ fx0 y0g
T; ð136aÞ

the bending stiffness matrices are

kb1o ¼
Bo

s05o

y02o �x0
oy0o

�x0
oy0o x02

o

" #
; kb2 ¼

Boko

s04o

2x0
oy0o y02o � x02

o

y02o � x02
o �2x0

oy0o

" #
; ð136b; cÞ

and the axial stiffness matrices are

kt1o ¼
ðTao � mioV2

ioÞ
s03o

�y0o2 x0
oy0o

x0
oy0o �x02

o

" #
; kt2o ¼ �

T 0
ao � mioVioV 0

io

s0o

� �
1 0

0 1

" #
; ð136d; eÞ

and the external load vector is

fo ¼
fxo

fyo

( )
¼ s0o

C
DxoV2

Hxo þ 2C
Dxy1oVHxoVHyo þ C

Dxy2oV2
Hyo

C
DyoV2

Hyo þ 2C
Dxy2oVHxoVHyo þ C

Dxy1oV2
Hxo � wao

( )
: ð136fÞ

6.2. Nonlinear static models in the natural system

Similarly, eliminating the time-dependent terms in Eq. (128) yields the static model

kb1no

s0oy
000
o

s0oy
0
oy

00
o

( )
þ kb2no

s0oy
00
o

s0oy
02
o

( )
þ kt1no

s0oy
0
o

0

( )
þ kt2no

0

s0o

( )
¼ fno; ð137Þ

where the bending stiffness matrices are

kb1no ¼
b1no 0

0 �b1no

" #
; kb2no ¼

b2no 0

0 �b3no

" #
; ð138a; bÞ

in which the bending coefficients are

b1no ¼
Bo

s03o
; b2no ¼

2B0
o

s03o
�
3Bo

s03o

s00o
s0o

� �
; b3no ¼

B0
o

s03o
�

Bo

s03o

s00o
s0o

� �
; ð139c2eÞ
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b4no ¼
B00

o

s03o
�
3B0

o

s03o

s00o
s0o

� �
�

Bo

s03o

s000o

s0o

� �
þ
3Bo

s03o

s00o
s0o

� �2

; ð139fÞ

the axial stiffness matrices are

kt1no ¼ b4no �
ðTao � mioV2

ioÞ
s0o

� 
1 0

0 0

" #
; kt2no ¼ �

T 0
ao � mioVioV 0

io

s0o

� �
0 0

0 1

" #
; ð139g; hÞ

and the external load vector is

fno ¼
fno

fto

( )
¼ s0o

C
DnoV2

Hno þ wao sin yo

C
DtoV2

Hto � wao cos yo

( )
: ð139iÞ

6.3. First-order models for nonlinear static equilibriums

Likewise, once the time-dependent terms in Eqs. (131) and (132) are eliminated, the system of the first-order

differential equilibrium equations is obtained as

dxo

da
¼ s0o sin yo; ð140aÞ

dyo

da
¼ s0o cos yo; ð140bÞ

dyo

da
¼ s0o

Mo

Bo

; ð140cÞ

dMo

da
¼ s0oðVo sin yo � Ho cos yoÞ ¼ s0oQo; ð140dÞ

dHo

da
¼ s0o mioV2

io

Mo

Bo

cos yo þ
mioVioV 0

io

s0o
sin yo

� �
� fxo; ð140eÞ

qVo

qa
¼ s0o �mioV2

io

Mo

Bo

sin yo þ
mioVioV 0

io

s0o
cos yo

� �
� fyo; ð140fÞ

dQo

da
¼ ðTao � mioV2

ioÞ
dyo

da
þ fno; ð140gÞ

dTao

da
¼ �Qo

dyo

da
þ mioVio

dVio

da
� fto: ð140hÞ

The boundary-value problem of the system of the first-order ordinary differential equations (140) can be solved

directly by numerical integrations. Application of the system of equations (140) to a nonlinear bucking analysis of

extensible flexible marine pipes transporting fluid via the method of adjacent nonlinear equilibrium has been

demonstrated by Chucheepsakul and Monprapussorn (2001).

7. Choices of the independent variable

One salient feature of the large strain formulations presented in this work is that the independent variable a used in

the formulations provides flexibility in the choice of parameters defining elastic curves. The formulations therefore

allow users to select the independent variable that is most efficient for their own problem solution. For example,

analysis of flexible marine pipes as shown in Fig. 1 has at least three alternatives for the independent variable a such as
the vertical coordinate y; the offset distance x; and the arc length s:
The advantage of using a ¼ y is that the total water depth or the boundary condition is known initially, while by

using a ¼ x the boundary condition is known if the offset at the top end of the pipe can be assumed to be static, and is

unknown if the offset is dynamic. If one uses a ¼ s; the boundary condition is always unknown, because the total arc
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length changes after deformation. The problem for which the boundary condition is unknown becomes much more

difficult, and requires specific treatment.

However, the disadvantage of using a ¼ y is that if elastic curves after large displacements form like the U-shape or

the semi-U-shape as shown in Figs. 1(b) and (c), the vertical position is no longer a one-to-one function for all points on

the elastic curves. Consequently, a ¼ y is not an effective choice in this case. Likewise, using a ¼ x encounters the same

difficulty when the elastic curves after large displacements develop akin to the C-shape or the semi-C-shape. In these

troublesome cases, using a ¼ s becomes the best way, because arc length is an intrinsic property, and thus is always a

one-to-one function for all points of the elastic curves.

Therefore for flexible marine pipes which do not face the problem of elastic curves having a U-shape, such as the

high-tensioned pipes as shown in Fig. 1(a), using a ¼ y is sufficient. However, if the pipes confront the problem that

occurs in the case of low-tensioned pipes as shown in Figs. 1(b) and (c), a ¼ s should be employed. It should be noted

that in addition to the three alternatives of a as exemplified earlier, there are still other choices of a such as the span

length, the rotational angle, and so on, which may be employed if efficient.

8. Extension to other applications

The present formulations are applicable to large strain analysis not only of flexible marine pipes, but also of any kind

of elastica structures listed below.

(a) Onshore pipes: The effect of external fluid would be excluded from the present models.

(b) Submerged pipes: The hydrodynamic pressure effect of external fluid would be excluded.

(c) Marine cables: Bending rigidity and influence of internal fluid would be excluded.

(d) Submerged cables: Bending rigidity, influence of internal fluid, and hydrodynamic pressure effect of external fluid

would be excluded from the present models.

(e) Onshore cables and strings: Bending rigidity, and influences of internal and external fluids would be excluded from

the present models.

(f) Elastic rods, long columns, and long beams: Influences of external and internal fluids would be excluded from the

present models.

Even though the present models are intended for elastica structures with environment-induced initial curvatures, the

models can still be extended to elastica structures with man-made initial curvatures such as curved beams and arches by

considering %ka0 in application of the extensible elastica theory presented in this paper.

9. Conclusions

A literature review has shown that the effects of axial deformation, internal flow, and Poisson’s ratio effect can be

significant in the behaviour of flexible marine pipes. To take account of the combined action of these effects in flexible

marine pipe analysis, large strain formulations are needed. The essential mathematical principles for large strain

modelling are developed in this paper. These include original developments of the apparent tension concept, and the

extensible elastica theories from the viewpoints of total Lagrangian, updated Lagrangian, and Eulerian mechanics.

Based on large strain elasticity and the apparent tension concept, it is shown that the Poisson’s ratio effect influences the

characteristics of internal flow, and induces the apparent tension rather than the effective tension. Therefore, the

apparent tension should be used in large strain analysis for general Poisson’s ratios.

Based on the proposed mathematical principles, the large strain formulations are developed by the virtual work

method and the vectorial method in both Cartesian and natural coordinates. The virtual work method produces large

strain models in the three weak forms of integral equations, and one strong form of differential equations, while the

vectorial method yields the identical strong form. All the four forms of the models can be used for large strain analysis

of the pipe, however, with different aspects of model solutions as summarized in Table 1. Relying upon the strong form,

one can create large strain models of large amplitude vibrations and nonlinear static equilibrium of pipes. The

advantages of the present models relate to the flexibility offered in choice of the independent variable, and the

possibility of applying them to numerous elastica problems, including even some biomechanics applications such as

veins conveying fluids inside the human body, and vessels rising water in the xylem of a plant.
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Appendix A. Derivation of extensible elastica theory

Consider Fig. 2(b). Displacements and deformations of the pipe element from the undeformed state (state 1) to the

equilibrium state (state 2), and then to the displaced state (state 3) result in changes of

* axial strain at the neutral axis %e-eo-e;
* bending moment %M-Mo-M;
* radius of curvature %r-ro-r;
* differential arc length d%s-dso-ds;
* differential rotation angle d%y-dyo-dy:

Rotations of cross-section from state 1 to 2, from state 2 to 3, and from state 1 to 3 are denoted by djo ¼ dyo � d%y;
djd ¼ dy� dyo; and dj ¼ dy� d%y; respectively.
In order to describe these changes, the three deformation descriptors previously defined in Section 2.1 are employed.

Consequently, the extensible elastica theory can be developed by the total Lagrangian, the updated Lagrangian, and the

Eulerian formulations as follows.

A.1. Total Lagrangian formulation

The total Lagrangian formulation considers total changes from state 1 to 3 by neglecting the intermediate state 2. All

changes are measured relative to the original state 1. The theoretical development starts by expressing the undeformed

and deformed arc lengths of the fibre at any radius B as

d%sB ¼ ð%r þ BÞ d%y; ðA:1aÞ

dsB ¼ ðr þ BÞðdjþ d%yÞ ¼ r dyþ Bðdjþ d%yÞ: ðA:1bÞ

Since d%y ¼ d%s=%r and dy ¼ ds=r ¼ ð1þ eÞ d%s=r; Eqs. (A.1) may be written in the form

d%sB ¼ 1þ
B
%r

' (
d%s ¼ ð1þ B %kÞ d%s; ðA:2aÞ

dsB ¼ ð1þ eÞ d%s þ B djþ
d%s

%r

� �
¼ 1þ eþ B

dj
d%s

þ B %k
� �

d%s; ðA:2bÞ

where %k ¼ 1=%r and k ¼ 1=r are the curvatures at the undeformed and the displaced states, and

dj
d%s

¼
dy
ds

ds

d%s
�
d%y
d%s

¼ kð1þ eÞ � %k: ðA:3Þ

Table 1

Alternatives of large strain modeling of flexible marine pipes

Large strain

models by

Governing equations Constraint of

natural BCs

Solution methods

Equations Type

Weak form 1 (82)–(85) None

Weak form 2 (86), (87), (89), (90) Integral equations Some Limited to assumed

mode methods

Weak form 3 (91), (92), (94), (95) All

Strong form (97)–(100), or (101), (106), or

(115)–(119)

Differential

equations

All Unlimited
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From Definition 4, the TL-strain of the fibre at any radius B is defined by

eB ¼
dsB � d%sB

d%sB
¼

ðeþ Bðdj=d%sÞÞ d%s
ð1þ B %kÞ d%s

¼
eþ B½kð1þ eÞ � %k	

1þ B %k
: ðA:4Þ

The stress corresponding to the TL-strain sB ¼ EeB is referred to as the Kirchhoff stress. The axial force and the bending
moment due to the Kirchhoff stress can be expressed as

N ¼
Z

%AP

sB d %AP ¼ E

Z
%AP

eþ B½kð1þ eÞ � %k	
1þ B %k

� 
d %AP; ðA:5aÞ

M ¼
Z

%AP

sBB d %AP ¼ E

Z
%AP

eBþ B2½kð1þ eÞ � %k	
1þ B %k

� 
d %AP; ðA:5bÞ

in which E is the elastic modulus and %AP is the undeformed cross-sectional area of a pipe.

If the following geometrical properties of the cross-section

%A
P ¼

Z
%AP

d %AP

1þ B %k
; %Q

P ¼
Z

%AP

B d %AP

1þ B %k
; %IP ¼

Z
%AP

B2 d %AP

1þ B %k
: ðA:6a2cÞ

are defined, Eqs. (A.5) may be rewritten in the form

N ¼ E %A
Peþ E %Q

P kð1þ eÞ � %k½ 	; M ¼ E %Q
Peþ E %IP½kð1þ eÞ � %k	: ðA:7a; bÞ

The TL-strain energy due to the TL-strain eB is measured with respect to the undeformed volume of the pipe %8P:
Therefore, its expression is given by

U ¼
Z
%8P

sBeB
2

d %8P ¼
Z
%8P

e2B
2
d %8P: ðA:8Þ

Taking the first variation of Eq. (A.8), one obtains

dU ¼
Z
%8P

EeBdeB d %8P ¼
Z
%s

Z
%AP

sB
deþ Bd½kð1þ eÞ � %k	

1þ B %k

� 
d %AP d%s: ðA:9Þ

For elastica problems, B %k ¼ B=%r51; thus 1=ð1þ B %kÞE1: Consequently, Eqs. (A.6) yield %A
PE %AP; %Q

PE0; and %IPE %IP:
Substituting these conditions in Eqs. (A.4), (A.7), and (A.9), the constitutive equations of the extensible elastica theory

can be obtained as

TL-axial strain:

eB ¼ eþ B½kð1þ eÞ � %k	; ðA:10Þ

TL-axial force:

N ¼ E %APe; ðA:11Þ

TL-bending moment:

M ¼ E %IP½kð1þ eÞ � %k	; ðA:12Þ

TL-strain energy:

dU ¼
Z
%s

fNdeþ Md½kð1þ eÞ � %k	g d%s ¼
Z
a
½Nds0 þ Mdðy0 � %y0Þ	 da ðA:13Þ

Note that

de ¼ d
ds � d%s

d%s

� �
¼ ds0=%s0; d½kð1þ eÞ � %k	 ¼ d

dy
d%s

�
d%y
d%s

� �
¼ dðy0 � %y0Þ=%s0:

A.2. Updated Lagrangian formulation

The updated Lagrangian formulation considers the two-step changes from state 1 to 2, and then from state 2 to 3. All

changes are measured relative to the intermediate state 2. The development starts by expressing the three state arc

lengths of the fibre at any B as

d%sB ¼ ð%r þ BÞ d%y ¼ %r d%yþ Bðdyo � djoÞ; ðA:14aÞ
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dso ¼ ðro þ BÞ dyo; ðA:14bÞ

dsB ¼ ðr þ BÞðdjd þ dyoÞ ¼ r dyþ Bðdjd þ dyoÞ: ðA:14cÞ

Since d%y ¼ d%s=%r ¼ ð1� eoÞ dso=%r; dyo ¼ dso=ro; and dy ¼ ds=r ¼ ð1þ ed Þ dso=r; Eqs. (A.14) may be written in the form

d%sB ¼ ð1� eoÞ dso þ B
dso

ro

� djo

� �
¼ 1� eo þ Bko � B

djo

dso

� �
dso; ðA:15aÞ

dsoB ¼ 1þ
B
ro

� �
dso ¼ ð1þ BkoÞ dso; ðA:15bÞ

dsB ¼ ð1þ ed Þ dso þ B djd þ
dso

ro

� �
¼ 1þ ed þ B

djd

dso

þ Bko

� �
dso; ðA:15cÞ

where %k ¼ 1=%r; ko ¼ 1=ro; and k ¼ 1=r are the curvatures at the three states, and

djo

dso

¼
dyo

dso

�
d%y
d%s

d%s

dso

¼ ko � %kð1� eoÞ; ðA:16aÞ

djd

dso

¼
dy
ds

ds

dso

�
dyo

dso

¼ kð1þ ed Þ � ko; ðA:16bÞ

dj
dso

¼
djo

dso

þ
djd

dso

¼ kð1þ ed Þ � %kð1� eoÞ: ðA:16cÞ

From Definition 4, the UL-strain of the fibre at any radius B is defined by

eB ¼
dsB � d%sB

dsoB
¼

ed þ eo þ Bðdjd=dso þ djo=dsoÞ
� �

dso

ð1þ BkoÞ dso

¼
eþ B½kð1þ ed Þ � %kð1� eoÞ	

1þ Bko

: ðA:17Þ

The stress corresponding to the UL-strain is referred to as the updated Kirchhoff stress. The axial force and the bending

moment due to the updated Kirchhoff stress can be expressed as

N ¼
Z

APo

sB dAPo ¼ E

Z
APo

eþ B½kð1þ ed Þ � %kð1� eoÞ	
1þ Bko

� 
dAPo; ðA:18aÞ

M ¼
Z

APo

sBB dAPo ¼ E

Z
APo

eBþ B2½kð1þ ed Þ � %kð1� eoÞ	
1þ Bko

� 
dAPo; ðA:18bÞ

in which APo is the deformed cross-sectional area of the pipe at the equilibrium state.

If the following geometrical properties of the cross-section

A
Po ¼

Z
APo

dAPo

1þ Bko

; Q
Po ¼

Z
APo

B dAPo

1þ Bko

; IPo ¼
Z

APo

B2 dAPo

1þ Bko

: ðA:19a2cÞ

are defined, Eqs. (A.18) may be rewritten in the form

N ¼ EA
Poeþ EQ

Po½kð1þ ed Þ � %kð1� eoÞ	; ðA:20aÞ

M ¼ EQ
Poeþ EIPo½kð1þ ed Þ � %kð1� eoÞ	: ðA:20bÞ

The UL-strain energy due to the UL-strain eB is measured based on the deformed volume at the equilibrium state of

the pipe 8Po: Thus, it can be expressed as

U ¼
Z
8Po

sBeB
2

d8Po ¼
Z
8Po

e2B
2
d8Po: ðA:21Þ

Taking the first variation of Eq. (A.21), one obtains

dU ¼
Z
8Po

EeBdeB d8Po ¼
Z

so

Z
APo

sB
deþ Bd kð1þ ed Þ � %kð1� eoÞ½ 	

1þ Bko

� 
dAPo dso: ðA:22Þ

For elastica problems, Bko ¼ B=ro51; so 1=ð1þ BkoÞE1: Consequently, Eqs. (A.19) produce A
PoEAPo;Q

PoE0; and
IPoEIPo: Using these conditions in Eqs. (A.17), (A.20), and (A.22), the constitutive equations of the extensible elastica

theory can be obtained as
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UL-axial strain:

eB ¼ eþ B½kð1þ ed Þ � %kð1� eoÞ	; ðA:23Þ

UL-axial force:

N ¼ EAPoe; ðA:24Þ

UL-bending moment:

M ¼ EIPo½kð1þ ed Þ � %kð1� eoÞ	; ðA:25Þ

UL-strain energy:

dU ¼
Z
%s

Ndeþ Md½kð1þ ed Þ � %kð1� eoÞ	f g dso

¼
Z
a
½Nds0 þ Mdðy0 � %y0Þ	 da: ðA:26Þ

Note that

de ¼ d
ds � d%s

dso

� �
¼ ds0=s0o; d kð1þ ed Þ � %kð1� eoÞ½ 	 ¼ d

dy
dso

�
d%y
dso

� �
¼ dðy0 � %y0Þ=s0o:

A.3. Eulerian Formulation

The Eulerian formulation considers total changes from state 1 to 3 by neglecting the intermediate state 2. All changes

are measured relative to the final state 3. The development starts by expressing the undeformed and deformed arc

lengths of the fibre at any radius B as

d%sB ¼ ð%r þ BÞ d%y ¼ %r d%yþ Bðdy� djÞ; ðA:27aÞ

dsB ¼ ðr þ BÞ dy: ðA:27bÞ

Since d%y ¼ ð1� eÞ ds=%r and dy ¼ ds=r; Eq. (A.27) may be written in the form

d%sB ¼ ð1� eÞ ds þ B
ds

r
� dj

� �
¼ 1� eþ Bk�

dj
ds

� �
ds; ðA:28aÞ

dsB ¼ ð1þ BkÞ ds; ðA:28bÞ

where %k ¼ 1=%r and k ¼ 1=r are the curvatures at the undeformed and the displaced states, and

dj
ds

¼
dy
ds

�
d%y
d%s

d%s

ds
¼ k� %kð1� eÞ: ðA:29Þ

From Definition 4, the EL-strain of the fibre at any radius B is defined by

eB ¼
dsB � d%sB

dsB
¼

ðeþ Bðdj=dsÞÞ ds

ð1þ BkÞ ds
¼

eþ B½k� %kð1� eÞ	
1þ Bk

: ðA:30Þ

The stress corresponding to the EL-strain is referred to as the Cauchy stress. The axial force and bending moment due

to the Cauchy stress can be expressed as

N ¼
Z

AP

sB dAP ¼ E

Z
AP

eþ B½k� %kð1� eÞ	
1þ Bk

� 
dAP; ðA:31aÞ

M ¼
Z

AP

sBB dAP ¼ E

Z
AP

eBþ B2½k� %kð1� eÞ	
1þ Bk

� 
dAP; ðA:31bÞ

in which AP is the deformed cross-sectional area of the pipe at the displaced state.

If the following geometrical properties of the cross-section

A
P ¼

Z
AP

dAP

1þ Bk
; ðA:32aÞ

Q
P ¼

Z
AP

B dAP

1þ Bk
; ðA:32bÞ
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IP ¼
Z

AP

B2 dAP

1þ Bk
: ðA:32cÞ

are defined, Eqs. (A.31) may be rewritten in the form

N ¼ EA
Peþ EQ

P k� %kð1� eÞ½ 	; ðA:33aÞ

M ¼ EQ
Peþ EIP½k� %kð1� eÞ	: ðA:33bÞ

The EL-strain energy due to the EL-strain eB is measured with respect to the deformed volume at the displaced state

of the pipe 8P: Thus, its expression is given by

U ¼
Z
8P

sBeB
2

d8P ¼
Z
8P

e2B
2
d8P: ðA:34Þ

Taking the first variation of Eq. (A.34), one obtains

dU ¼
Z
8P

EeBdeB d8P ¼
Z

s

Z
AP

sB
deþ Bd½k� %kð1� eÞ	

1þ Bk

� 
dAP ds: ðA:35Þ

For elastica problems, Bk ¼ B=r51; thus 1=ð1þ BkÞE1: As a result, Eqs. (A.32) yield A
PEAP;Q

PE0; and IPEIP:
Substituting these conditions in Eqs. (A.30), (A.33), and (A.35), the constitutive equations of the extensible elastica

theory are obtained as

EL-axial strain:

eB ¼ eþ B½k� %kð1� eÞ	; ðA:36Þ

EL-axial force:

N ¼ EAPe; ðA:37Þ

EL-bending moment:

M ¼ EIP½k� %kð1� eÞ	; ðA:38Þ

EL-strain energy:

dU ¼
Z

s

fNdeþ Md½k� %kð1� eÞ	g ds ¼
Z
a
½Nds0 þ Mdðy0 � %y0Þ	 da: ðA:39Þ

Note that

de ¼ d
ds � d%s

ds

� �
Eds0=s0; d½k� %kð1� eÞ	 ¼ d

dy
ds

�
d%y
ds

� �
Edðy0 � %y0Þ=s0:
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